Construction of solvent-dependent self-assembled porous Ni(ii)-coordinated frameworks as effective catalysts for chemical transformation of CO2

RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 108010-108016 ◽  
Author(s):  
Zhen Zhou ◽  
Lu Yang ◽  
Yefei Wang ◽  
Cheng He ◽  
Tao Liu ◽  
...  

Two types of Ni(ii)-based coordinated frameworks have been solvothermally synthesized via solvent driven self-assembly, showing efficient heterogeneous catalytic activity toward cycloaddition of CO2 with epoxides under ambient conditions.

RSC Advances ◽  
2014 ◽  
Vol 4 (48) ◽  
pp. 25040-25050 ◽  
Author(s):  
Yanzhen Yin ◽  
Shufei Jiao ◽  
Chao Lang ◽  
Junqiu Liu

A smart supramolecular artificial glutathione peroxidase (GPx) with tunable catalytic activity was prepared based on host–guest interaction and a blending process. The change of the self-assembled structure of SGPxmax during the temperature responsive process played a significant role in altering the temperature responsive catalytic behavior.


2021 ◽  
Author(s):  
Safaa Eldin H. Etaiw ◽  
Safaa N. Abdou Nabih Abdou

Abstract A new 3D-host-guest supramolecular coordination polymer (SCP); ∞3[(Cu3(CN)3)2.(DAHP)], 1 [1,7-diaminoheptane=.(DAHP)] had been synthesized by self-assembly at ambient conditions. X-ray single crystal diffraction of SCP 1 indicated the formation of two-fold [Cu3(CN)3]2 units containing tetrahedral copper(I) atoms which are arranged in unique way to create 3D-network. The neutral [Cu3(CN)3]2 building blocks create unique complex structure containing the minicycle [Cu2(μ3-CN)2] motif with wide cavities enable to capsulate the long chain DAHP as guest molecule. The topology of 1 had been studied by elemental analysis, IR-spectra and thermogravimetric analyses. The topology of 1 had been compared with the prototype SCP containing different aliphatic diamines which indicated the effect of structural variability and flexibility of aliphatic diamines on the network structure of these SCP. The catalytic and photo-catalytic activity of 1 was studied for mineralization of methylene blue (MB) utilizing H2O2 as an oxidant.


2015 ◽  
Vol 3 (42) ◽  
pp. 21167-21177 ◽  
Author(s):  
Manikkavalli Mohan ◽  
Nagaboopathy Mohan ◽  
Dillip Kumar Chand

A facile method to prepare gold nanofilms (AuNFs), from hexaazamacrocycle (L) stabilized AuNPs, by self-assembly at liquid/liquid interfaces is developed. A vial coated with AuNFs was used as a recoverable and reusable catalytic reservoir for nitro-reduction reactions in water under ambient conditions.


2021 ◽  
Author(s):  
Safaa Etaiw ◽  
Mohamed M. Dawood ◽  
Hassan Marie

Abstract Single crystals of AgSCN supramolecular coordination polymer, SCP1 and the nanosized particles of AgSCN, 2, are synthesized by self-assembly and ultrasonic radiation methods, respectively. The structure comprises of the simple AgSCN molecule fabricated by a tetrahedral Ag atom and one thiocyanate group. The SCN ligand connects four Ag atoms via µ3-S and one nitrogen atom. Two silver atoms and two sulfur atoms form rhombic mini-cycle (Ag2S2) motif exhibiting argentophilic interaction. The structure of SCP1 extends three-dimensionally via coordinate bonds creating different fused polygons. The chemical structure and morphology of nanosized 2 are characterized by powder X-ray diffraction and transmission electron microscopy (TEM) and spectroscopic methods. The heterogeneous catalytic and photo-catalytic activity of nanosized 2 exhibit very efficient catalytic activity towards degradation of Acid Blue-92 and Eosin-Y dyes within very short times under UV-light or ultrasonic radiation. The good limit of detection and the high quenching efficiency of SCP1 towards selective quantitative determination of nitrobenzene (NB) and Fe3+ ions support its behavior as an efficient luminescent sensor.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2020 ◽  
Author(s):  
Daniel B. Straus ◽  
Robert J. Cava

The design of new chiral materials usually requires stereoselective organic synthesis to create molecules with chiral centers. Less commonly, achiral molecules can self-assemble into chiral materials, despite the absence of intrinsic molecular chirality. Here, we demonstrate the assembly of high-symmetry molecules into a chiral van der Waals structure by synthesizing crystals of C<sub>60</sub>(SnI<sub>4</sub>)<sub>2</sub> from icosahedral buckminsterfullerene (C<sub>60</sub>) and tetrahedral SnI4 molecules through spontaneous self-assembly. The SnI<sub>4</sub> tetrahedra template the Sn atoms into a chiral cubic three-connected net of the SrSi<sub>2</sub> type that is held together by van der Waals forces. Our results represent the remarkable emergence of a self-assembled chiral material from two of the most highly symmetric molecules, demonstrating that almost any molecular, nanocrystalline, or engineered precursor can be considered when designing chiral assemblies.


2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


1988 ◽  
Vol 53 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Viliam Múčka ◽  
Kamil Lang

Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalyst with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a testing reaction. It has been found that along to both basic components, the system under study contains also the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate is catalytically active. During the first period of the reaction the equilibrium is being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties are changed rather significantly after the thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably in connection with the changes of the valence state of the catalytically active components of the catalyst.


2021 ◽  
Vol 11 (7) ◽  
pp. 3254
Author(s):  
Marco Pisco ◽  
Francesco Galeotti

The realization of advanced optical fiber probes demands the integration of materials and structures on optical fibers with micro- and nanoscale definition. Although researchers often choose complex nanofabrication tools to implement their designs, the migration from proof-of-principle devices to mass production lab-on-fiber devices requires the development of sustainable and reliable technology for cost-effective production. To make it possible, continuous efforts are devoted to applying bottom-up nanofabrication based on self-assembly to decorate the optical fiber with highly ordered photonic structures. The main challenges still pertain to “order” attainment and the limited number of implementable geometries. In this review, we try to shed light on the importance of self-assembled ordered patterns for lab-on-fiber technology. After a brief presentation of the light manipulation possibilities concerned with ordered structures, and of the new prospects offered by aperiodically ordered structures, we briefly recall how the bottom-up approach can be applied to create ordered patterns on the optical fiber. Then, we present un-attempted methodologies, which can enlarge the set of achievable structures, and can potentially improve the yielding rate in finely ordered self-assembled optical fiber probes by eliminating undesired defects and increasing the order by post-processing treatments. Finally, we discuss the available tools to quantify the degree of order in the obtained photonic structures, by suggesting the use of key performance figures of merit in order to systematically evaluate to what extent the pattern is really “ordered”. We hope such a collection of articles and discussion herein could inspire new directions and hint at best practices to fully exploit the benefits inherent to self-organization phenomena leading to ordered systems.


2009 ◽  
Vol 143 ◽  
pp. 345 ◽  
Author(s):  
Aurelie M. Brizard ◽  
Marc C. A. Stuart ◽  
Jan H. van Esch

Sign in / Sign up

Export Citation Format

Share Document