scholarly journals Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing

RSC Advances ◽  
2017 ◽  
Vol 7 (25) ◽  
pp. 15342-15351 ◽  
Author(s):  
S. Komathi ◽  
A. I. Gopalan ◽  
N. Muthuchamy ◽  
K. P. Lee

We demonstrated that the electrochemical glucose biosensor fabricated using glucose oxidase-immobilized polyaniline nanoflower-grafted nanodiamonds exhibits superior performances.

2020 ◽  
Vol 20 (9) ◽  
pp. 5333-5337
Author(s):  
Hye Su Kim ◽  
Ji Sun Lee ◽  
Moon Il Kim

We have developed hydrogel nanoparticles made of poly-γ-glutamic acid (PGA) and chitosan, which entraps both glucose oxidase (GOx) and magnetic nanoparticles (MNPs) within the hydrogel matrix. The preparation of poly-γ-glutamic acid/chitosan hydrogel nanoparticles (PGA/CS NPs) entrapping GOx and MNPs begins with the mixing of GOx and MNPs with PGA solution followed by their dropwise addition into chitosan solution to induce rapid ionic gelation. The glucose sensing relies on the generation of H2O2 through the entrapped GOx-mediated catalysis in the presence of glucose, which consequently activates the peroxidase-like activity of MNPs to convert an employed chromogenic substrate, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), into a green colored product. Using this strategy, the target glucose was successfully detected over a wide linear range, from 5 to 100 μM with a lower detection limit of 3 μM, which is sufficient to diagnose high level of glucose (hyperglycemia) in human blood. The hydrogel nanoparticle-based glucose biosensor also showed high stability with magnetic reusability. Since any oxidative enzymes could be incorporated within the PGA/CS NPs, we expect that the hydrogelbased biosensor would be highly beneficial for the detection of various other clinically important target molecules.


2013 ◽  
Vol 328 ◽  
pp. 695-699 ◽  
Author(s):  
Hui Ping Liu ◽  
Gong Yong Zhan ◽  
Qi Zhi Dong ◽  
Yan An Lv ◽  
Jian Fang Wang ◽  
...  

In this paper, we fabricated a bionanocomposite film of glucose oxidase/Pt nanoparticles/graphene-chitosan (GOD/PtNPs/GR-Chit) for glucose sensing. The hybrid bionanocomposites modified GCE were characterized by scanning electron microscopy (SEM), cyclic voltammetry, and amperometric i-t curve. It was found that the PtNPs were uniformly deposited on the surface of GR-Chit hybrid film. The resultant PtNPs/GR-Chit/GCE exhibited a high electrochemical catalytic ability to hydrogen peroxide (H2O2), due to the electrocatalytic synergy of GR and PtNPs. The redox behavior of the GOD/PtNPs/GR-Chit/GCE is a surface-controlled process. Finally, we obtained the amperometric response of the GOD/PtNPs/GR-Chit/GCE toward different concentration of glucose, and also achieved a sensitive glucose oxidase biosensor with a detection limit of 4.6μM glucose.


Biosensors ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 86 ◽  
Author(s):  
Hong Dinh Duong ◽  
Ok-Jae Sohn ◽  
Jong Il Rhee

Glucose concentration is an important parameter in biomedicine since glucose is involved in many metabolic pathways in organisms. Many methods for glucose detection have been developed for use in various applications, particularly in the field of healthcare in diabetics. In this study, ratiometric fluorescent glucose-sensing membranes were fabricated based on the oxygen levels consumed in the glucose oxidation reaction under the catalysis of glucose oxidase (GOD). The oxygen concentration was measured through the fluorescence quenching effect of an oxygen-sensitive fluorescent dye like platinum meso-tetra (pentafluorophenyl) porphyrin (PtP) by oxygen molecules. Coumarin 6 (C6) was used as a reference dye in the ratiometric fluorescence measurements. The glucose-sensing membrane consisted of two layers: The first layer was the oxygen-sensing membrane containing polystyrene particles (PS) doped with PtP and C6 (e.g., PS@C6^PtP) in a sol–gel matrix of aminopropyltrimethoxysilane and glycidoxypropyltrimethoxysilane (GA). The second layer was made by immobilizing GOD onto one of three supporting polymers over the first layer. These glucose-sensing membranes were characterized in terms of their response, reversibility, interferences, and stability. They showed a wide detection range to glucose concentration in the range of 0.1 to 10 mM, but high sensitivity with a linear detection range of 0.1 to 2 mM glucose. This stable and sensitive ratiometric fluorescent glucose biosensor provides a reliable way to determine low glucose concentrations in blood serum by measuring tear glucose.


Author(s):  
Nicole Jaffrezic-Renault ◽  
Ilhem Rassas ◽  
Mohamed Braiek ◽  
Anne Bonhomme ◽  
François Bessueille ◽  
...  

In this work, an enzymatic sensor, based on a bionanocomposite film consisting of a polyelectrolyte complex (PEC) [Chitosan/kappa-carrageenan] doped with gold nanoparticles (AuNPs) encapsulating glucose oxidase (GOD) deposited on a gold electrode (Au) for glucose sensing, is described. Using the electrocatalytic synergy of AuNPs and GOD as a model of enzyme, the variation of the current (µA) as a function of the log of the glucose concentration (log [glucose]), shows 3 times higher sensitivity for the modified electrode (283.9) compared to that of the PEC/GOD modified electrode (93.7), with a detection limit of about 5 µM and a linearity range between 10µM and 7mM. The response of the PEC/AuNPs/GOD based biosensor also presents good reproducibility, stability and negligible interfering effects from ascorbic acid, uric acid, urea and creatinine. The applicability of the PEC/AuNPs/GOD based biosensor was tested in glucose-spiked saliva samples and acceptable recovery rates were obtained.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 154 ◽  
Author(s):  
Ilhem Rassas ◽  
Mohamed Braiek ◽  
Anne Bonhomme ◽  
Francois Bessueille ◽  
Guy Raffin ◽  
...  

In this work, an enzymatic sensor, based on a bionanocomposite film consisting of a polyelectrolyte complex (PEC) (Chitosan/kappa-carrageenan) doped with gold nanoparticles (AuNPs) encapsulating glucose oxidase (GOD) deposited on a gold electrode (Au) for glucose sensing, is described. Using the electrocatalytic synergy of AuNPs and GOD as a model of enzyme, the variation of the current (µA) as a function of the log of the glucose concentration (log [glucose]), shows three times higher sensitivity for the modified electrode (283.9) compared to that of the PEC/GOD modified electrode (93.7), with a detection limit of about 5 µM and a linearity range between 10 µM and 7 mM. The response of the PEC/AuNPs/GOD based biosensor also presents good reproducibility, stability, and negligible interfering effects from ascorbic acid, uric acid, urea, and creatinine. The applicability of the PEC/AuNPs/GOD based biosensor was tested in glucose-spiked saliva samples and acceptable recovery rates were obtained.


Talanta ◽  
2013 ◽  
Vol 116 ◽  
pp. 801-808 ◽  
Author(s):  
Mohammad Ali Kamyabi ◽  
Nasim Hajari ◽  
Anthony P.F. Turner ◽  
Ashutosh Tiwari

Sign in / Sign up

Export Citation Format

Share Document