Exploring the dynamics of phase separation in colloid–polymer mixtures with long range attraction

Soft Matter ◽  
2016 ◽  
Vol 12 (24) ◽  
pp. 5325-5333 ◽  
Author(s):  
Juan Sabin ◽  
Arthur E. Bailey ◽  
Barbara J. Frisken

Dynamic scaling and growth of structure in colloid–polymer samples spanning the phase diagram depend primarily on the strength of attraction.

2021 ◽  
Vol 126 (18) ◽  
Author(s):  
Ahmad K. Omar ◽  
Katherine Klymko ◽  
Trevor GrandPre ◽  
Phillip L. Geissler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. S. Kozlyakova ◽  
A. V. Moskin ◽  
P. S. Berdonosov ◽  
V. V. Gapontsev ◽  
S. V. Streltsov ◽  
...  

AbstractUniform quasi-one-dimensional integer spin compounds are of interest as a potential realization of the Haldane conjecture of a gapped spin liquid. This phase, however, has to compete with magnetic anisotropy and long-range ordered phases, the implementation of which depends on the ratio of interchain J′ and intrachain J exchange interactions and both uniaxial D and rhombic E single-ion anisotropies. Strontium nickel selenite chloride, Sr2Ni(SeO3)2Cl2, is a spin-1 chain system which passes through a correlations regime at Tmax ~ 12 K to long-range order at TN = 6 K. Under external magnetic field it experiences the sequence of spin-flop at Bc1 = 9.0 T and spin-flip transitions Bc2 = 23.7 T prior to full saturation at Bsat = 31.0 T. Density functional theory provides values of the main exchange interactions and uniaxial anisotropy which corroborate the experimental findings. The values of J′/J = 0.083 and D/J = 0.357 place this compound into a hitherto unoccupied sector of the Sakai-Takahashi phase diagram.


2011 ◽  
Vol 106 (22) ◽  
Author(s):  
B. Lonetti ◽  
M. Camargo ◽  
J. Stellbrink ◽  
C. N. Likos ◽  
E. Zaccarelli ◽  
...  

2015 ◽  
Vol 57 ◽  
pp. 21-32 ◽  
Author(s):  
Ha Giang ◽  
Roie Shlomovitz ◽  
Michael Schick

We consider two mechanisms that can lead to an inhomogeneous distribution of components in a multicomponent lipid bilayer: macroscopic phase separation and the formation of modulated phases. A simple model that encompasses both mechanisms displays a phase diagram that also includes a structured fluid, a microemulsion. Identifying rafts with the inhomogeneities of this structured fluid, we see how rafts are related to the occurrence of macroscopic phase separation or the formation of modulated phases in other systems, and focus our attention on specific differences between them.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1576
Author(s):  
Biswaroop Mukherjee ◽  
Buddhapriya Chakrabarti

Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer–polymer ( O P ) and oligomer–gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel–oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz–Slyozov–Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Our work allows for rational design of polymer/gel–oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.


Sign in / Sign up

Export Citation Format

Share Document