Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts

2016 ◽  
Vol 4 (30) ◽  
pp. 11559-11581 ◽  
Author(s):  
Jue Wang ◽  
Bing Li ◽  
Thomas Yersak ◽  
Daijun Yang ◽  
Qiangfeng Xiao ◽  
...  

Cost, electrochemical activity and durability of the catalysts remain the key issues affecting the commercialization of fuel cells.

2014 ◽  
Vol 4 (5) ◽  
pp. 1400-1406 ◽  
Author(s):  
Yuta Nabae ◽  
Mayu Sonoda ◽  
Chiharu Yamauchi ◽  
Yo Hosaka ◽  
Ayano Isoda ◽  
...  

A Pt-free cathode catalyst for polymer electrolyte membrane fuel cells has been developed by multi-step pyrolysis of Fe phthalocyanine and phenolic resin and shows a quite promising fuel cell performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19153-19161 ◽  
Author(s):  
Xueqiang Gao ◽  
Hongmei Yu ◽  
Jia Jia ◽  
Jinkai Hao ◽  
Feng Xie ◽  
...  

The anion exchange ionomer incorporated into the electrodes of an anion exchange membrane fuel cell (AEMFC) enhances anion transport in the catalyst layer of the electrode, and thus improves performance and durability of the AEMFC.


2014 ◽  
Vol 2 (19) ◽  
pp. 7015-7019 ◽  
Author(s):  
He-Yun Du ◽  
Chen-Hao Wang ◽  
Chen-Shuan Yang ◽  
Hsin-Cheng Hsu ◽  
Sun-Tang Chang ◽  
...  

A well-controlled Pt/PBI–CNT electrode provides not only good interfacial continuity but also numerous edge planes, which has strong electrochemical activity in HT-PEMFCs.


2008 ◽  
Vol 20 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Caofeng Pan ◽  
Hui Wu ◽  
Cheng Wang ◽  
Bo Wang ◽  
Lu Zhang ◽  
...  

2016 ◽  
Vol 2 (5) ◽  
pp. 858-863 ◽  
Author(s):  
Wulin Yang ◽  
Bruce E. Logan

Microbial fuel cell (MFC) cathodes must have high performance and be resistant to water leakage.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6709
Author(s):  
Zhihao Shang ◽  
Ryszard Wycisk ◽  
Peter Pintauro

A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.


Author(s):  
Brian Wolf ◽  
Shripad Revankar

Fuel cell hybrid technology has the potential to significantly change our current energy infrastructure. Past studies have shown that the combination of fuel cells and turbines can produce power at remarkably high efficiencies with low levels of pollution. The work presented in this paper is an initial step to further development of a hybrid system model. The fuel cell model discussed is used to perform parametric studies to aid in the optimization of a hybrid system. This paper provides an overview of fuel cell hybrid systems and distributive generation. A fuel cell model is implemented in SIMULINK using basic balance equations. Key issues of modeling specifically high temperature fuel cells are discussed along with their transient response and how it may affect the performance of a distributive generation system.


Sign in / Sign up

Export Citation Format

Share Document