Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries

2016 ◽  
Vol 4 (37) ◽  
pp. 14106-14110 ◽  
Author(s):  
Linyi Bai ◽  
Qiang Gao ◽  
Yanli Zhao

Two fully conjugated covalent organic frameworks present high performance for both gas capture and Li ion storage, confirming their high potential in future Li–gas battery applications.

CrystEngComm ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1862-1866 ◽  
Author(s):  
Hai-Yang Wu ◽  
Min Huang ◽  
Chao Qin ◽  
Xin-Long Wang ◽  
Hai Hu ◽  
...  

Three polyoxometalates have been synthesized to be utilized as anode materials for lithium ion batteries.


2019 ◽  
Vol 7 (38) ◽  
pp. 21976-21984 ◽  
Author(s):  
Shi-Zhang Chen ◽  
Yuan-Xiang Deng ◽  
Xuan-Hao Cao ◽  
Wu-Xing Zhou ◽  
Ye-Xin Feng ◽  
...  

Novel nanoporous carbon foam structures are designed, and revealed the high performances of lithium-ion batteries when used as anode materials.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 827 ◽  
Author(s):  
Ying Liu ◽  
Xueying Li ◽  
Anupriya K. Haridas ◽  
Yuanzheng Sun ◽  
Jungwon Heo ◽  
...  

Lithium ion (Li-ion) batteries have been widely applied to portable electronic devices and hybrid vehicles. In order to further enhance performance, the search for advanced anode materials to meet the growing demand for high-performance Li-ion batteries is significant. Fe3C as an anode material can contribute more capacity than its theoretical one due to the pseudocapacity on the interface. However, the traditional synthetic methods need harsh conditions, such as high temperature and hazardous and expensive chemical precursors. In this study, a graphitic carbon encapsulated Fe/Fe3C (denoted as Fe/Fe3C@GC) composite was synthesized as an anode active material for high-performance lithium ion batteries by a simple and cost-effective approach through co-pyrolysis of biomass and iron precursor. The graphitic carbon shell formed by the carbonization of sawdust can improve the electrical conductivity and accommodate volume expansion during discharging. The porous microstructure of the shell can also provide increased active sites for the redox reactions. The in-situ-formed Fe/Fe3C nanoparticles show pseudocapacitive behavior that increases the capacity. The composite exhibits a high reversible capacity and excellent rate performance. The composite delivered a high initial discharge capacity of 1027 mAh g−1 at 45 mA g−1 and maintained a reversible capacity of 302 mAh g−1 at 200 mA g−1 after 200 cycles. Even at the high current density of 5000 mA g−1, the Fe/Fe3C@GC cell also shows a stable cycling performance. Therefore, Fe/Fe3C@GC composite is considered as one of the potential anode materials for lithium ion batteries.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ji Yan ◽  
Xin-Bo Chang ◽  
Xiao-Kai Ma ◽  
Heng Wang ◽  
Yong Zhang ◽  
...  

Phosphorization of metal oxides/hydoxides to promote electronic conductivity as a promising strategy has attracted enormous attention for improving the electrochemical properties of anode material in lithium ion batteries. For this article, selective phosphorization from NiCo2O4 to NiO/Ni2Co4P3 microspheres was realized as an efficient route to enhance the electrochemical lithium storage properties of bimetal Ni-Co based anode materials. The results show that varying phosphorizaed reagent amount can significantly affect the transformation of crystalline structure from NiCo2O4 to intermediate NiO, hybrid NiO/Ni2Co4P3, and, finally, to Ni2Co4P3, during which alterated sphere morphology, shifted surface valance, and enhanced lithium-ion storage behavior are detected. The optimized phosphorization with 1:3 reagent mass ratio can maintain the spherical architecture, hold hybrid crystal structure, and improve the reversibly electrochemical lithium-ion storage properties. A specific capacity of 415 mAh g−1 is achieved at 100 mA g−1 specific current and maintains at 106 mAh g−1 when the specific current increases to 5000 mA g−1. Even after 200 cycles at 500 mA g−1, the optimized electrode still delivers 224 mAh g−1 of specific capacity, exhibiting desirable cycling stability. We believe that understanding of such selective phosphorization can further evoke a particular research enthusiasm for anode materials in lithium ion battery with high performances.


2020 ◽  
Vol 8 (24) ◽  
pp. 12124-12133 ◽  
Author(s):  
Jin-Sung Park ◽  
Jeong Hoo Hong ◽  
Su Hyun Yang ◽  
Yun Chan Kang

The search for promising anode materials with optimum compositions for use in lithium ion batteries (LIBs) is still underway.


2017 ◽  
Vol 5 (7) ◽  
pp. 3667-3674 ◽  
Author(s):  
Qiang Pang ◽  
Yingying Zhao ◽  
Xiaofei Bian ◽  
Yanming Ju ◽  
Xudong Wang ◽  
...  

MoS2 nanosheets were impregnated into mesoporous TiO2 and encapsulated by a graphene layer resulting in excellent Li ion storage properties.


2019 ◽  
Vol 7 (26) ◽  
pp. 15766-15773 ◽  
Author(s):  
Gi Dae Park ◽  
Jeong Hoo Hong ◽  
Dae Soo Jung ◽  
Jong-Heun Lee ◽  
Yun Chan Kang

Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders are successfully synthesized as an efficient anode material for lithium-ion batteries


2015 ◽  
Vol 3 (47) ◽  
pp. 23844-23851 ◽  
Author(s):  
Jingjing Tang ◽  
Juan Yang ◽  
Xiangyang Zhou ◽  
Haimin Yao ◽  
Limin Zhou

SnO2 nanocrystals embedding into porous graphene/carbon nanowires (SnO2-PG/CNWs) are flexibly synthesized, exhibiting superior electrochemical properties as anode materials for lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (27) ◽  
pp. 21066-21073 ◽  
Author(s):  
Chunyu Zhu ◽  
Nan Sheng ◽  
Tomohiro Akiyama

Manganese oxides are promising anode materials for lithium ion batteries based on conversion reactions.


Sign in / Sign up

Export Citation Format

Share Document