Flexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties

2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.

2021 ◽  
Vol 9 (1) ◽  
pp. 214-222
Author(s):  
Xiaojing Liu ◽  
Wenyu Wu ◽  
Bin Guo ◽  
Minghao Cui ◽  
Huaxin Ma ◽  
...  

Graphene films prepared through a self-assembly of graphene oxide and its derivatives have been recently explored for electromagnetic interference (EMI) shielding applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26959-26966 ◽  
Author(s):  
Suryasarathi Bose ◽  
Maya Sharma ◽  
Avanish Bharati ◽  
Paula Moldenaers ◽  
Ruth Cardinaels

Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhance EMI shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT covered droplets.


2019 ◽  
Vol 7 (32) ◽  
pp. 9820-9829 ◽  
Author(s):  
Zeying Zhan ◽  
Quancheng Song ◽  
Zehang Zhou ◽  
Canhui Lu

Ti3C2Tx/TOCNF composite papers present excellent mechanical strength and EMI shielding effectiveness due to their hierarchically aligned structure and strong intermolecular interactions.


Author(s):  
Ch Hima Gireesh ◽  
Koona Ramji ◽  
K.G Durga Prasad ◽  
Budumuru Srinu

In the present technological environment, the aerospace industry needs cutting-edge materials not only to meet the requirements such as lower weight and higher values of strength and stiffness, but also to protect against electromagnetic interference. In this article, an attempt has been made to prepare Al6061 hybrid metal matrix composites reinforced with varying percentages of SiC, Al2O3, and fly ash particulates through a stir-casting route. As per ASTM standards, various tests have been conducted to know the density, tensile strength, yield strength, and hardness. Simultaneously, all the prepared composites are tested for electromagnetic interference (EMI) shielding effectiveness (SE) under the X band frequency with the help of a vector network analyzer. In order to identify the composite possessing good mechanical properties, as well as shielding effectiveness, a TOPSIS methodology has been employed in this work. The present study reveals that the proposed hybrid composite contains 5% of each reinforcement material which shows better mechanical properties as well as good shielding effectiveness.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050157
Author(s):  
Shaofeng lin ◽  
Qing Zheng ◽  
Bowen Lei ◽  
Jianwei Zhang ◽  
Dazhi Jiang

Three kinds of diamine monomers [ethylenediamine, butylenediamine and [Formula: see text]-phenylenediamine (PPD)] are adopted to cross-link carboxylated graphene (GP-COOH) sheets through filtration with a vacuum-assisted self-assembly technique, to fabricate highly conductive and excellent electromagnetic interference (EMI) shielding films. XRD spectroscopy of cross-linked graphene films exhibits higher interlayer [Formula: see text]-spacing than the GP-COOH film. Results of FTIR and XPS spectroscopies indicate that diamine monomers are chemically grafted to the GP-COOH sheets through nucleophilic substitution reactions. Compared with that of the GP-COOH film, electrical conductivity of the PPD-cross-linked graphene film (GP-PPD) is remarkably improved from 69.7[Formula: see text]S/cm to 248.6[Formula: see text]S/cm, attributed to the decrease of junction contact resistance between adjacent graphene sheets, nitrogen doping effect and repair of defects. Higher nitrogen content and C/O ratio are observed in the XPS spectra of the GP-PPD film, leading to higher electrical conductivity than the remaining two amine-modified graphene films. The GP-PPD film also demonstrates excellent EMI shielding performance, with EMI shielding effectiveness (SE) of 26.5 dB at a thickness of 12.5[Formula: see text][Formula: see text]m, which is also better than the others. The outstanding EMI performance of the PPD-cross-linked graphene film is mainly ascribed to the enhanced electrical conductivity and modified electronic structure with nitrogen doping.


Nanoscale ◽  
2019 ◽  
Vol 11 (17) ◽  
pp. 8616-8625 ◽  
Author(s):  
Li Huang ◽  
Jianjun Li ◽  
Yibin Li ◽  
Xiaodong He ◽  
Ye Yuan

High-performance electromagnetic interference (EMI) shielding materials possess features of light weight, flexibility and excellent EMI shielding effectiveness.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3308-3316 ◽  
Author(s):  
Caichao Wan ◽  
Yue Jiao ◽  
Xianjun Li ◽  
Wenyan Tian ◽  
Jian Li ◽  
...  

A multi-dimensional and level-by-level assembly strategy is developed to construct free-standing and sandwich-type nanoheterostructures achieving an outstanding EMI shielding effectiveness of ∼50.6 dB in the X-band.


2016 ◽  
Vol 4 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Qing Yuchang ◽  
Wen Qinlong ◽  
Luo Fa ◽  
Zhou Wancheng ◽  
Zhu Dongmei

Graphene nanosheets filled BaTiO3 ceramics with high-performance EMI shielding effectiveness, greater than 40 dB in the X-band at 1.5 mm thickness, were prepared via pressureless sintering.


Sign in / Sign up

Export Citation Format

Share Document