scholarly journals Targeting secondary protein complexes in drug discovery: studying the druggability and chemical biology of the HSP70/BAG1 complex

2017 ◽  
Vol 53 (37) ◽  
pp. 5167-5170 ◽  
Author(s):  
Lindsay E. Evans ◽  
Keith Jones ◽  
Matthew D. Cheeseman

A non-nucleotide FP-probe was designed to study the mechanism of action and druggability of the secondary HSP70/BAG1 complex.

2013 ◽  
Vol 9 (4) ◽  
pp. 232-240 ◽  
Author(s):  
Monica Schenone ◽  
Vlado Dančík ◽  
Bridget K Wagner ◽  
Paul A Clemons

2019 ◽  
Vol 26 (21) ◽  
pp. 3890-3910 ◽  
Author(s):  
Branislava Gemovic ◽  
Neven Sumonja ◽  
Radoslav Davidovic ◽  
Vladimir Perovic ◽  
Nevena Veljkovic

Background: The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. Objective: Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. Methods: We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. Results: We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. Conclusion: PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein–protein complexes for experimental studies.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.


Synlett ◽  
2021 ◽  
Author(s):  
Lin Chen ◽  
You-Fen Li ◽  
Zheng-Jun Chen ◽  
Wen-Ya Jiao ◽  
Zhi-Jiao Chen

AbstractThe efficient organocatalyzed Michael/ammonolysis cascade reaction of N-protected 4-aminopyrazolones and α,β-unsaturated acyl phosphates has been developed. This tactic gives rise to architecturally multifarious spiro(2-oxopyrrolidinyl)-5,4′-pyrazolones in good productiveness (up to 88% yield) and with moderate to good diastereoselectivities (up to 20:1 dr). These novel hybrid heterocycles would be promising candidates for drug-discovery programs and chemical biology.


2011 ◽  
pp. 235-251
Author(s):  
Devan Marar ◽  
Shobha H. Ganji ◽  
Vaijinath S. Kamanna ◽  
Moti L. Kashyap

MedChemComm ◽  
2014 ◽  
Vol 5 (3) ◽  
pp. 386-396 ◽  
Author(s):  
Georgios Drakakis ◽  
Adam E. Hendry ◽  
Kimberley Hanson ◽  
Suzanne C. Brewerton ◽  
Michael J. Bodkin ◽  
...  

Given the increasing utilization of phenotypic screens in drug discovery also the subsequent mechanism-of-action analysis gains increased attention.


Sign in / Sign up

Export Citation Format

Share Document