Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: a catalytic interface for propane dehydrogenation

2017 ◽  
Vol 53 (51) ◽  
pp. 6937-6940 ◽  
Author(s):  
Lidan Deng ◽  
Hiroki Miura ◽  
Tetsuya Shishido ◽  
Saburo Hosokawa ◽  
Kentaro Teramura ◽  
...  

Pt/SiO2 directly reduced in H2 at 1073 K exhibited a high catalytic activity in propane dehydrogenation, primarily attributed to the electronic modification of Pt nanoparticles by the SMSI effect.

Author(s):  
Ming-Hui Yao

The chemisorption ability and catalytic properties of metal particles supported on reducible oxides are often altered by high temperature reduction(HTR) in a process known as strong metal-support interaction(SMSI). Different models have been proposed to explain the SMSI mechanism. In recent years, experimental evidences have favored the "decoration model", which suggests that SMSI is due to the encapsulation of the metal particles by oxide overlayer species dial have migrated from the support. HREM profile imaging was the most useful tool to directly relate these surface decorations to the SMSI effects. The profile imaging can provide atomic-scale information about supported particles and Uieir surfaces without image being obscured by overlapping contrast from the support.In the present work, the SMSI effect in Pt/TiO2 and Pt/CeO2 model catalysts have been studied using HREM profile imaging and multislice simulations. HREM observations were made with a JEM-4000EX microscope, operated at 400 kV. Fig. 1(a) shows a typical profile image of TiO2 after HTR in H2 at 923K.


2021 ◽  
Vol 45 (12) ◽  
pp. 5704-5711
Author(s):  
Luming Wu ◽  
Yu Hao ◽  
Shaohua Chen ◽  
Rui Chen ◽  
Pingchuan Sun ◽  
...  

Rare earth metal doped ZrO2 can promote the formation of oxygen vacancies in zirconia, which enhances the metal–support interaction, finally promoting catalytic activity of FA dehydrogenation.


Author(s):  
Liangcai Zhang ◽  
Xinyu Liu ◽  
Hengwei Wang ◽  
Lina Cao ◽  
Chenxi Huang ◽  
...  

Strong metal-support interaction (SMSI) has long been studied in catalytic reactions. Proper utilization of the SMSI effect might not only improve the stability of the catalysts, but also the activity...


Sign in / Sign up

Export Citation Format

Share Document