Effects of operating and design parameters on ion exchange columns for nutrient recovery from urine

2018 ◽  
Vol 4 (6) ◽  
pp. 828-838 ◽  
Author(s):  
William A. Tarpeh ◽  
Ileana Wald ◽  
Maja Wiprächtiger ◽  
Kara L. Nelson

Ion exchange is a promising option for recovering nutrients (nitrogen, phosphorus, and potassium) from source-separated urine.

2020 ◽  
Author(s):  
Shu-Yuan Pan ◽  
Chao-Yu Wei ◽  
Anwar Jamaal Wade ◽  
Po-Chih Tseng

<p>Agricultural wastewater including anaerobic digestate is annually generated in a huge quantity in Taiwan. The management of agricultural wastewater should be emphasized on the recovery and production of value-added resources, such as macronutrients (nitrogen, phosphorus, and potassium), for realizing the circular bioeconomy. In this paper, we will illustrate the development of energy-efficient electrokinetic processes for nutrient recovery from agricultural wastewater. First, we evaluate the performance of electrokinetic separations processes for recovery of macronutrients. We also discuss major challenges in managing nutrient reuse by the developed electrokinetic methods. Then, we elucidate the process chemistry and reaction kinetics by the processes. Lastly, we consider the interconnectivity among water, energy and the produced macronutrients in the context of large-scale deployment.</p>


2012 ◽  
Vol 66 (5) ◽  
pp. 1110-1116 ◽  
Author(s):  
H. Nagare ◽  
T. Fujiwara ◽  
T. Inoue ◽  
S. Akao ◽  
K. Inoue ◽  
...  

As a result of long-term continuous use of fertilizers in farm land, a large amount of nutrients accumulate in the soil, increasing the risk of eutrophication or nitrate pollution of groundwater. For rehabilitating the farm soil and recovering nutrients such as nitrogen, phosphorus and potassium, a new system has been developed by our research group. This paper discusses the methodology of extracting nutrients from biomass in order to recover phosphorus and other nutrients in crystal form. Around 80% or higher extraction rates were achieved for phosphorus and potassium by soaking the powdered tissue in distilled water or 1% NaOH solution for 24 h. The extracted phosphorus and potassium act as a potential resource for recycled fertilizer or other industrial materials.


2010 ◽  
Vol 36 (4) ◽  
pp. 655-664 ◽  
Author(s):  
Yong-Jian SUN ◽  
Yuan-Yuan SUN ◽  
Xu-Yi LI ◽  
Rong-Ping ZHANG ◽  
Xiang GUO ◽  
...  

2016 ◽  
Vol 30 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Ewa Błońska ◽  
Kazimierz Januszek ◽  
Stanisław Małek ◽  
Tomasz Wanic

AbstractThe experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.


itsrj ◽  
2021 ◽  
Author(s):  
Brian McDonald ◽  
Alec Kowalewski ◽  
Clint Mattox ◽  
Emily Braithwaite ◽  
Charles Schmid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tej Bahadur Darji ◽  
Barsha Adhikari ◽  
Seeta Pathak ◽  
Shristi Neupane ◽  
Lal B. Thapa ◽  
...  

AbstractThe response of native plants to allelopathic interference of invasive species may differ from species to species. In this study, the phytotoxic effects of Ageratina adenophora were tested on two native shrubs (Osbeckia stellata and Elsholtzia blanda) of Nepal. Both the shrubs were grown in pots under treatments of A. adenophora fresh leaves and root leachates, and litter. Then, the seedling length and biomass were compared among the treatments. The results show that A. adenophora litter has stimulatory effects but the leachates from fresh leaves and root are phytotoxic to the growth and development of native shrubs. Infrared Spectroscopy (IR) analysis confirmed the presence of O–H (Hydroxyl), N–H (Amines), C≡C (Alkynes), and C–H stretching (Aromatic) or C–O–C stretching (Ethers) in the leachates representing harmful allelochemicals. The invaded soil by A. adenophora had low pH and a high amount of organic matter, total nitrogen, phosphorus, and potassium than the uninvaded soil. The results indicate that the native O. stellata and E. blanda are harmed by A. adenophora in nature by leaching of allelochemicals and probably by reducing the soil pH. Overall, this study has provided valuable insights regarding the effects of A. adenophora invasion on native shrubs and revealing the potential mechanism of its invasiveness.


Sign in / Sign up

Export Citation Format

Share Document