Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS

2018 ◽  
Vol 33 (5) ◽  
pp. 846-855 ◽  
Author(s):  
Yung-Hsin Liu ◽  
Kuo-Fang Huang ◽  
Der-Chuen Lee

A low-blank, high-precision and highly reproducible technique for boron (B) and lithium (Li) isotope analyses in small sample-size silicate materials by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) was developed in this study.

2013 ◽  
Vol 151 (5) ◽  
pp. 816-829 ◽  
Author(s):  
MAGNUS KRISTOFFERSEN ◽  
TOM ANDERSEN ◽  
ARILD ANDRESEN

AbstractU–Pb and Lu–Hf isotope analyses of detrital zircon from the latest Ordovician (Hirnantian) Langøyene Formation, the Late Silurian Ringerike Group and the Late Carboniferous Asker Group in the Oslo Rift were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Overall the U–Pb dating yielded ages within the range 2861–313 Ma. The U–Pb age and Lu–Hf isotopic signatures correspond to virtually all known events of crustal evolution in Fennoscandia, as well as synorogenic intrusions from the Norwegian Caledonides. Such temporally and geographically diverse source areas likely reflect multiple episodes of sediment recycling in Fennoscandia, and highlights the intrinsic problem of using zircon as a tracer-mineral in ‘source to sink’ sedimentary provenance studies. In addition to its mostly Fennoscandia-derived detritus, the Asker Group also have zircon grains of Late Devonian – Late Carboniferous age. Since no rocks of these ages are known in Fennoscandia, these zircons are inferred to be derived from the Variscan Orogen of central Europe.


RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31224-31232 ◽  
Author(s):  
Liu Willow Yang ◽  
Chenhui Liu ◽  
Tao Yang

Anion exchange membranes (AEMs) are adept at extracting sulfate for sulfur isotope analyses by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) from natural samples typically with low sulfate concentrations.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document