Dumbbell-like, core–shell and Janus-like configurations in Pd@Au@Pd three-shell nanoalloys: a molecular dynamics study

2017 ◽  
Vol 4 (9) ◽  
pp. 1551-1561 ◽  
Author(s):  
Hamed Akbarzadeh ◽  
Esmat Mehrjouei ◽  
Mehdi Sherafati ◽  
Amir Nasser Shamkhali

Molecular dynamics simulation was used to investigate the thermal stability and the final stable structure of Pd@Au@Pd three-shell nanoparticles after the melting point.

2017 ◽  
Vol 8 (20) ◽  
pp. 5064-5068 ◽  
Author(s):  
Hamed Akbarzadeh ◽  
Esmat Mehrjouei ◽  
Amir Nasser Shamkhali ◽  
Mohsen Abbaspour ◽  
Sirous Salemi ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhiguo Chen ◽  
Yi Fu ◽  
Wenbo Xu ◽  
Ming Li

Bacillus amyloliquefaciensribonuclease Barnase (RNase Ba) is a 12 kD (kilodalton) small extracellular ribonuclease. It has broad application prospects in agriculture, clinical medicine, pharmaceutical, and so forth. In this work, the thermal stability of Barnase has been studied using molecular dynamics simulation at different temperatures. The present study focuses on the contribution of noncovalent intramolecular interaction to protein stability and how they affect the thermal stability of the enzyme. Profiles of root mean square deviation and root mean square fluctuation identify thermostable and thermosensitive regions of Barnase. Analyses of trajectories in terms of secondary structure content, intramolecular hydrogen bonds and salt bridge interactions indicate distinct differences in different temperature simulations. In the simulations, Four three-member salt bridge networks (Asp8-Arg110-Asp12, Arg83-Asp75-Arg87, Lys66-Asp93-Arg69, and Asp54-Lys27-Glu73) have been identified as critical salt bridges for thermostability which are maintained stably at higher temperature enhancing stability of three hydrophobic cores. The study may help enlighten our knowledge of protein structural properties, noncovalent interactions which can stabilize secondary peptide structures or promote folding, and also help understand their actions better. Such an understanding is required for designing efficient enzymes with characteristics for particular applications at desired working temperatures.


2017 ◽  
Vol 19 (25) ◽  
pp. 16681-16692 ◽  
Author(s):  
Katerina S. Karadima ◽  
Vlasis G. Mavrantzas ◽  
Spyros N. Pandis

MD simulations predicted core–shell or partially engulfed morphologies (depending on the type of the organic compound present) in multicomponent aerosol nanoparticles.


2012 ◽  
Vol 3 ◽  
pp. 586-588 ◽  
Author(s):  
Saurav Goel ◽  
Alexander Stukowski ◽  
Gaurav Goel ◽  
Xichun Luo ◽  
Robert L Reuben

Recent molecular dynamics simulation results have increased conceptual understanding of the grazing and the ploughing friction at elevated temperatures, particularly near the substrate’s melting point. In this commentary we address a major constraint concerning its experimental verification.


Sign in / Sign up

Export Citation Format

Share Document