scholarly journals Improved performance of hole-transporting layer-free perovskite solar cells by using graphene oxide sheets as the nucleation centers

RSC Advances ◽  
2017 ◽  
Vol 7 (72) ◽  
pp. 45320-45326 ◽  
Author(s):  
Xue Sun ◽  
Tong Lin ◽  
Qiaogang Song ◽  
Yue Fu ◽  
Ye Wang ◽  
...  

Graphene oxide sheets (GOSs) are introduced between indium tin oxide (ITO) and CH3NH3PbI3 in inverted hole-transport layer-free planar heterojunction perovskite solar cells.

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1281
Author(s):  
Jae Woong Jung ◽  
Seung Hwan Son ◽  
Jun Choi

We herein address the optoelectronic properties of polyaniline composite films with graphene oxide and reduced graphene oxide as a hole transport layer in inverted perovskite solar cells. The composite films exhibited enhanced electrical conductivity and suitable energy level matching with CH3NH3PbI3 for efficient hole extraction/transport than the pristine polyaniline film, which thus can deliver improved photovoltaic properties of device. The composite film-based devices exhibited maximum efficiency of 16.61%, which is enhanced by 21.6% from the device with the pristine polyaniline hole transport layer (efficiency = 13.66%). The reduced graphene oxide-based composite film also achieved improved long-term operative stability as compared to the pristine polyaniline-based device, demonstrating a great potential of reduced graphene oxide/polyaniline composite hole transport layer for high performance perovskite solar cells.


Solar Energy ◽  
2016 ◽  
Vol 131 ◽  
pp. 176-182 ◽  
Author(s):  
Dan Li ◽  
Jin Cui ◽  
Hao Li ◽  
Dekang Huang ◽  
Mingkui Wang ◽  
...  

2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Hui Luo ◽  
Xuanhuai Lin ◽  
Xian Hou ◽  
Likun Pan ◽  
Sumei Huang ◽  
...  

2021 ◽  
Vol 1 (12 (109)) ◽  
pp. 36-43
Author(s):  
Rustan Hatib ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

Organic metal halide perovskite has recently shown great potential for applications, as it has the advantages of low cost, excellent photoelectric properties, and high power conversion efficiency. The Hole Transport Material (HTM) is one of the most critical components in Perovskite Solar Cells (PSC). It has the function of optimizing the interface, adjusting the energy compatibility, and obtaining higher PCE. The inorganic p-type semiconductor is an alternative HTM due to its chemical stability, higher mobility, increased transparency in the visible region, and general valence band energy level (VB). Here we report the use of the Graphene Oxide (GO) layer as a Hole Transport Layer (HTL) to improve the perovskite solar cells' performance. The crystal structure and thickness of GO significantly affect the increase in solar cell efficiency. This perovskite film must show a high degree of crystallinity. The configuration of the perovskite material is FTO/NiO/GO/CH3NH3PbI3/ZnO/Ag. GO as a Hole Transport Layer can increase positively charged electrons' mobility to improve current and voltage. As a blocking layer that can prevent recombination. The GO can make the perovskite interface layer with smoother holes, and molecular uniformity occurs to reduce recombination. The method used in this study is by using spin coating. In the spin-coating process, the GO layer is coated on top of NiO with variations in the rotation of 700 rpm, 800 rpm, 900 rpm, 1,000 rpm, and 1,500 rpm. The procedure formed different thicknesses from 332.5 nm, 314.7 nm, 256.4 nm, 227.4 to 204.5 nm. The results obtained at a thickness of 227.4 nm reached the optimum efficiency, namely 15,3 %. Thus, the GO material as a Hole Transport Layer can support solar cell performance improvement by not being too thick and thin


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3895
Author(s):  
Tian Yuan ◽  
Jin Li ◽  
Shimin Wang

It is important to lower the cost and stability of the organic–inorganic hybrid perovskite solar cells (PSCs) for industrial application. The commonly used hole transport materials (HTMs) such as Spiro-OMeTAD, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) and poly(3-hexylthiophene-2,5-diyl) (P3HT) are very expensive. Here, 3,4-ethylenedioxythiophene (EDOT) monomers are in-situ polymerized on the surface of graphene oxide (GO) as PEDOT-GO film. Compared to frequently used polystyrene sulfonic acid (PSS), GO avoids the corrosion of the perovskite and the use of H2O solvent. The composite PEDOT-GO film is between carbon pair electrode and perovskite layer as hole transport layer (HTL). The highest power conversion efficiency (PCE) is 14.09%.


Sign in / Sign up

Export Citation Format

Share Document