scholarly journals Performance of perovskite solar cell coated with graphene oxide as hole transport layer

2021 ◽  
Vol 1 (12 (109)) ◽  
pp. 36-43
Author(s):  
Rustan Hatib ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

Organic metal halide perovskite has recently shown great potential for applications, as it has the advantages of low cost, excellent photoelectric properties, and high power conversion efficiency. The Hole Transport Material (HTM) is one of the most critical components in Perovskite Solar Cells (PSC). It has the function of optimizing the interface, adjusting the energy compatibility, and obtaining higher PCE. The inorganic p-type semiconductor is an alternative HTM due to its chemical stability, higher mobility, increased transparency in the visible region, and general valence band energy level (VB). Here we report the use of the Graphene Oxide (GO) layer as a Hole Transport Layer (HTL) to improve the perovskite solar cells' performance. The crystal structure and thickness of GO significantly affect the increase in solar cell efficiency. This perovskite film must show a high degree of crystallinity. The configuration of the perovskite material is FTO/NiO/GO/CH3NH3PbI3/ZnO/Ag. GO as a Hole Transport Layer can increase positively charged electrons' mobility to improve current and voltage. As a blocking layer that can prevent recombination. The GO can make the perovskite interface layer with smoother holes, and molecular uniformity occurs to reduce recombination. The method used in this study is by using spin coating. In the spin-coating process, the GO layer is coated on top of NiO with variations in the rotation of 700 rpm, 800 rpm, 900 rpm, 1,000 rpm, and 1,500 rpm. The procedure formed different thicknesses from 332.5 nm, 314.7 nm, 256.4 nm, 227.4 to 204.5 nm. The results obtained at a thickness of 227.4 nm reached the optimum efficiency, namely 15,3 %. Thus, the GO material as a Hole Transport Layer can support solar cell performance improvement by not being too thick and thin

2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43847-43852
Author(s):  
Su-Kyung Kim ◽  
Hae-Jun Seok ◽  
Do-Hyung Kim ◽  
Dong-Hyeok Choi ◽  
Seung-Ju Nam ◽  
...  

We compared nickel oxide (NiOx) deposited by thermal evaporation and that deposited by the spin-coating process, for use in the hole transport layers of inverted planar perovskite solar cells (PSCs).


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1281
Author(s):  
Jae Woong Jung ◽  
Seung Hwan Son ◽  
Jun Choi

We herein address the optoelectronic properties of polyaniline composite films with graphene oxide and reduced graphene oxide as a hole transport layer in inverted perovskite solar cells. The composite films exhibited enhanced electrical conductivity and suitable energy level matching with CH3NH3PbI3 for efficient hole extraction/transport than the pristine polyaniline film, which thus can deliver improved photovoltaic properties of device. The composite film-based devices exhibited maximum efficiency of 16.61%, which is enhanced by 21.6% from the device with the pristine polyaniline hole transport layer (efficiency = 13.66%). The reduced graphene oxide-based composite film also achieved improved long-term operative stability as compared to the pristine polyaniline-based device, demonstrating a great potential of reduced graphene oxide/polyaniline composite hole transport layer for high performance perovskite solar cells.


2020 ◽  
Author(s):  
Meenakshi Pegu ◽  
Laura Calio ◽  
Mehrad Ahmadpour ◽  
Horst-Günter Rubahn ◽  
Samrana Kazim ◽  
...  

<p>Semi-transparent perovskite solar cells have the competitive edge of being employed for building integrated photovoltaics due to their aesthetic benefits as light harvesting windows / facades. Perovskites have received considerable attention in recent years as a thin film photovoltaic alternative, that can also be tweaked for its transparency, evolving from potentially high bandgaps that are suited for semi-transparent solar cell fabrication. Due to the existing trade of between the efficiency and transparency of a perovskite solar cell, tuning the band gap can address this by making a bridge between the aforementioned parameters. We report our findings on the use of a wide-bandgap perovskite MAPbBr<sub>3</sub>, with a rational energetic level hole transport materials based on polycyclic aromatic hydrocarbon molecules that can be a promising alternative class of p-type material. In the present work, DBP (Dibenzo{[f,f' ]-4,4',7,7'-tetraphenyl}diindeno[1,2,3-cd :1',2',3'-lm]perylene, was evaluated with high band gap as well as with (FAPbI<sub>3</sub>)<sub>0.85</sub>(MAPbBr<sub>3</sub>)<sub>0.15 </sub>perovskites<sub> </sub>for the fabrication of solar cell. DBP based solar cells yielded competitive power conversion efficiencies as compared to classical HTMs.</p>


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3895
Author(s):  
Tian Yuan ◽  
Jin Li ◽  
Shimin Wang

It is important to lower the cost and stability of the organic–inorganic hybrid perovskite solar cells (PSCs) for industrial application. The commonly used hole transport materials (HTMs) such as Spiro-OMeTAD, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) and poly(3-hexylthiophene-2,5-diyl) (P3HT) are very expensive. Here, 3,4-ethylenedioxythiophene (EDOT) monomers are in-situ polymerized on the surface of graphene oxide (GO) as PEDOT-GO film. Compared to frequently used polystyrene sulfonic acid (PSS), GO avoids the corrosion of the perovskite and the use of H2O solvent. The composite PEDOT-GO film is between carbon pair electrode and perovskite layer as hole transport layer (HTL). The highest power conversion efficiency (PCE) is 14.09%.


2020 ◽  
Author(s):  
Meenakshi Pegu ◽  
Laura Calio ◽  
Mehrad Ahmadpour ◽  
Horst-Günter Rubahn ◽  
Samrana Kazim ◽  
...  

<p>Semi-transparent perovskite solar cells have the competitive edge of being employed for building integrated photovoltaics due to their aesthetic benefits as light harvesting windows / facades. Perovskites have received considerable attention in recent years as a thin film photovoltaic alternative, that can also be tweaked for its transparency, evolving from potentially high bandgaps that are suited for semi-transparent solar cell fabrication. Due to the existing trade of between the efficiency and transparency of a perovskite solar cell, tuning the band gap can address this by making a bridge between the aforementioned parameters. We report our findings on the use of a wide-bandgap perovskite MAPbBr<sub>3</sub>, with a rational energetic level hole transport materials based on polycyclic aromatic hydrocarbon molecules that can be a promising alternative class of p-type material. In the present work, DBP (Dibenzo{[f,f' ]-4,4',7,7'-tetraphenyl}diindeno[1,2,3-cd :1',2',3'-lm]perylene, was evaluated with high band gap as well as with (FAPbI<sub>3</sub>)<sub>0.85</sub>(MAPbBr<sub>3</sub>)<sub>0.15 </sub>perovskites<sub> </sub>for the fabrication of solar cell. DBP based solar cells yielded competitive power conversion efficiencies as compared to classical HTMs.</p>


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Meiying Liang ◽  
Adnan Ali ◽  
Abdelhak Belaidi ◽  
Mohammad Istiaque Hossain ◽  
Oskar Ronan ◽  
...  

Abstract Organometallic-halide perovskite solar cells (PSCs) are emerging as the most promising next generation solar cell devices. However, the stability is still the main bottleneck of their further development. Here, we introduce two-dimensional (2D) molybdenum chalcogenides (MoS2 and MoSe2) (MCs) nanoflakes as a buffer layer between perovskite layer and hole transport layer (HTL) to improve the stability of the organometallic-halide PSCs. 2D MCs are obtained via liquid-phase exfoliated (LPE) approach, and Glass/FTO/compact-TiO2/ mesoporous-TiO2/FA85MA15PbI85Br15/2D MCs/Spiro-OMeTAD/Au structured solar cell devices are designed and fabricated. In this system, 2D MCs act both as a protective layer and an additional HTL of PSCs. This kind of PSCs achieve a relatively high-power conversion efficiency (PCE) of 14.9%, along with a much longer lifetime stability compared to the standard PSCs. After 1 h, PCE of the PSC adding a 2D MCs buffer layer could maintain 93.1% of initial value, while the PCE of the standard PSC dropped dramatically to 78.2% of initial efficiency. Our results pave the way towards the implementation of 2D MCs nanoflakes as a material able to boost the shelf life of PSCs and further provide the opportunity to fabricate large-area PSCs in view of their commercialization.


The researchers now days are avid of solar cells despite the efficiency issues. As lead-based halide perovskite exhibit toxic nature alternatives for the anti- toxic perovskite solar cells(PSCs) are gaining much research. Bis(sulfanylidene )tungsten is a toxic free feasible emerging option with direct band gap of value 1.8 eV. Tungsten disulfide is other chemical name of Bis(sulfanylidene)tungsten. In this paper, perovskite solar cell (PSC) with Bis(sulfanylidene)tungsten (WS2 ) as electron transport layer and spiro-OMeTAD as hole transport layer is modelled and simulated using SCAPS software to analyze performance parameters. The device simulations results are compared for comprehensive defect study of WS2 as ETL. With integration of WS2 and spiro-OMeTAD in the perovskite design, the outcomes are proficient enough with 25.96% of PCE, 22.06 mA/cm2 Jsc, 1.280V Voc and 91.76% FF. Launching the batch setup for absorber layer thickness further resulted with competent PCE 27.78%. The outcomes signified that the toxic-free WS2 based PSC can be a prominent upcoming perspective in terms of environmentally pristine nature and capitulate comparative high efficiency


Sign in / Sign up

Export Citation Format

Share Document