scholarly journals Molybdenum trioxide thin film recombination barrier layers for dye sensitized solar cells

RSC Advances ◽  
2017 ◽  
Vol 7 (77) ◽  
pp. 48853-48860 ◽  
Author(s):  
Aditya Ashok ◽  
S. N. Vijayaraghavan ◽  
Shantikumar V. Nair ◽  
Mariyappan Shanmugam

MoO3 thin film recombination barrier layer suppresses electron–hole recombination at the FTO–TiO2 interface and facilitates charge transport.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tanja Ivanovska ◽  
Zoran Saponjic ◽  
Marija Radoicic ◽  
Luca Ortolani ◽  
Vittorio Morandi ◽  
...  

The basic concept for efficiency improvement in dye-sensitized solar cells (DSSC) is limiting the electron-hole recombination. One way to approach the problem is to improve the photogenerated charge carriers lifetime and consequently reduce their recombination probability. We are reporting on a facile posttreatment of the mesoporous photoanode by using a colloidal solution of TiO2nanoparticles. We have investigated the outcome of the different sintering temperature of the posttreated photoanodes on their morphology as well as on the conversion efficiency of the DSSC. The DSSCs composed of posttreated photoanodes at 450°C showed an increase inJSCand consequently an increase in efficiency of 10%. Investigations were made to determine the electron recombination via the electrolyte by the OCVD technique. We found that the posttreatment has the effect of reducing the surface trap states and thus increases the electron lifetime, which is responsible for the increase of the overall cell efficiency.


2021 ◽  
Vol 224 ◽  
pp. 110986
Author(s):  
S. Casadio ◽  
N. Sangiorgi ◽  
A. Sangiorgi ◽  
A. Dessì ◽  
L. Zani ◽  
...  

2013 ◽  
Vol 5 (17) ◽  
pp. 8289-8293 ◽  
Author(s):  
Baohua Wang ◽  
Shuai Chang ◽  
Lawrence Tien Lin Lee ◽  
Shizhao Zheng ◽  
King Yong Wong ◽  
...  

2019 ◽  
Vol 469 ◽  
pp. 821-828 ◽  
Author(s):  
Xiaojie Yang ◽  
Li Zhao ◽  
Kangle Lv ◽  
Binghai Dong ◽  
Shimin Wang

2021 ◽  
Author(s):  
T Sumathi ◽  
Sonia A Fredricka ◽  
G Deepa

Abstract In the last two decades, dye sensitized solar cells (DSSCs) have gotten a lot of attention from researchers and have progressed quickly. To promote commercialization and large-scale application of DSSCs, their efficiency should be increased. This paper details significant advancements in advanced NiMoS3/BC nanocomposites for improving photoanodes and DSSC conversion efficiencies. The fabricated electrode samples were characterized by XRD, SEM, TEM, Raman, UV, PL and BET to explore the structural, morphological and optical properties. A significant reduction band gap with enhanced light absorption and rapid prevention of electron hole pair was explored by UV-DRS and PL studies. The photocurrent density-voltage (J-V) and IPCE characteristics were analyzed for assembled solar cell. The NiMoS3/BC (NMSC5) nanocomposite DSSC showed a PCE of 8.85%, far higher than that of the NiMoS3 (2.45%) and a PCE value equivalent to Pt CE (4.79 %). The enhanced PCE of the proposed electrodes are also discussed in scientifically.


Sign in / Sign up

Export Citation Format

Share Document