scholarly journals A simple and efficient approach to fabricate graphene/CNT hybrid transparent conductive films

RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52555-52560 ◽  
Author(s):  
Jianhua Zhang ◽  
Zhangfu Chen ◽  
Xiaoxue Xu ◽  
Wei Liao ◽  
Lianqiao Yang

In this paper, a novel and scalable method to fabricate graphene/carbon nanotube (CNT) hybrid transparent conductive films on Cu substrates, which combines electroplating and chemical vapor deposition (CVD) is proposed and demonstrated.

Author(s):  
Yuri Ogura ◽  
Yuta Arata ◽  
Hiroyuki NISHINAKA ◽  
Masahiro YOSHIMOTO

Abstract We studied the phase diagram of (In x Ga1−x )2O3 thin films with a composition of x = 0 to 1 on Aluminum Nitride (AlN) templates grown using mist chemical vapor deposition. From X-ray diffraction results, we observed that the (In x Ga1−x )2O3 thin films exhibited three different single-phase crystal structures depending on the value of x: orthorhombic (κ)-(In x Ga1−x )2O3 for x ≤ 0.186, hexagonal (hex)-(In x Ga1−x )2O3 for 0.409 ≤ x ≤ 0.634, and body-centered cubic (bcc)-(In x Ga1−x )2O3 for x ≥ 0.772. The optical bandgap of (In x Ga1−x )2O3 was tuned from 3.27 eV (bcc-In2O3) and 4.17 eV (hex-InGaO3) to 5.00 eV (κ-Ga2O3). Moreover, hex-(In x Ga1−x )2O3 exhibited a wide bandgap (4.30 eV) and a low resistivity (7.4×10‒1 Ω·cm). Furthermore, hex-(In x Ga1−x )2O3 thin films were successfully grown on GaN and AlGaN/GaN templates. Therefore, hex-(In x Ga1−x )2O3 can be used in transparent conductive films for deep-ultraviolet LEDs.


ACS Nano ◽  
2010 ◽  
Vol 4 (12) ◽  
pp. 7337-7343 ◽  
Author(s):  
Ryota Yuge ◽  
Jin Miyawaki ◽  
Toshinari Ichihashi ◽  
Sadanori Kuroshima ◽  
Tsutomu Yoshitake ◽  
...  

2011 ◽  
Vol 519 (14) ◽  
pp. 4598-4602 ◽  
Author(s):  
Ki-Hwan Kim ◽  
Emmanuel Lefeuvre ◽  
Marc Châtelet ◽  
Didier Pribat ◽  
Costel Sorin Cojocaru

Sign in / Sign up

Export Citation Format

Share Document