Alloying In2O3 and Ga2O3 on AlN templates for deep-ultraviolet transparent conductive films by mist chemical vapor deposition

Author(s):  
Yuri Ogura ◽  
Yuta Arata ◽  
Hiroyuki NISHINAKA ◽  
Masahiro YOSHIMOTO

Abstract We studied the phase diagram of (In x Ga1−x )2O3 thin films with a composition of x = 0 to 1 on Aluminum Nitride (AlN) templates grown using mist chemical vapor deposition. From X-ray diffraction results, we observed that the (In x Ga1−x )2O3 thin films exhibited three different single-phase crystal structures depending on the value of x: orthorhombic (κ)-(In x Ga1−x )2O3 for x ≤ 0.186, hexagonal (hex)-(In x Ga1−x )2O3 for 0.409 ≤ x ≤ 0.634, and body-centered cubic (bcc)-(In x Ga1−x )2O3 for x ≥ 0.772. The optical bandgap of (In x Ga1−x )2O3 was tuned from 3.27 eV (bcc-In2O3) and 4.17 eV (hex-InGaO3) to 5.00 eV (κ-Ga2O3). Moreover, hex-(In x Ga1−x )2O3 exhibited a wide bandgap (4.30 eV) and a low resistivity (7.4×10‒1 Ω·cm). Furthermore, hex-(In x Ga1−x )2O3 thin films were successfully grown on GaN and AlGaN/GaN templates. Therefore, hex-(In x Ga1−x )2O3 can be used in transparent conductive films for deep-ultraviolet LEDs.

1993 ◽  
Vol 335 ◽  
Author(s):  
Frank Dimeo ◽  
Bruce W. Wessels ◽  
Deborah A. Neumayer ◽  
Tobin J. Marks ◽  
Jon L. Schindler ◽  
...  

AbstractBi2Sr2CaCu2O8 thin films have been prepared in situ by low pressure metalorganic chemical vapor deposition using fluorinated β–diketonate precursors. The influence of the growth conditions on the oxide phase stability and impurity phase formation was examined as well as the superconducting properties of the films. Thin films deposited on LaAIO3 substrates were epitaxial as confirmed by x-ray diffraction measurements, including θ-2θ and φ scans. Four probe resistivity measurements showed the films to be superconducting with a maximum Tc0 of 90 K without post annealing. This Tc0 is among the highest reported for thin films of the BSCCO (2212) phase, and approaches reported bulk values.


1994 ◽  
Vol 9 (12) ◽  
pp. 3125-3130 ◽  
Author(s):  
Justin F. Gaynor ◽  
Seshu B. Desu

Polyxylylene thin films grown by chemical vapor deposition (CVD) have long been utilized for uniform, pinhole-free conformal coatings. Homopolymer films are highly crystalline and have a glass transition temperature around room temperature. We show room temperature copolymerization with previously untested comonomers during the CVD process. Samples were studied with wavelength dispersive analysis, FTIR, scanning variable angle ellipsometry, and x-ray diffraction. Copolymerizing chloro-p-xylylene with perfluoro-octyl methacrylate results in dielectric constants at optical frequencies as low as 2.19, compared to 2.68 for the homopolymer. Copolymerizing p-xylylene with 4-vinylbiphenyl resulted in films whose onset of weight loss in TGA measurements was 450 °C, compared to 270 °C for the homopolymer.


MRS Advances ◽  
2020 ◽  
Vol 5 (31-32) ◽  
pp. 1705-1712
Author(s):  
Takumi Ikenoue ◽  
Satoshi Yoneya ◽  
Masao Miyake ◽  
Tetsuji Hirato

ABSTRACTWide-bandgap oxide semiconductors have received significant attention as they can produce devices with high output and breakdown voltage. p-Type conductivity control is essential to realize bipolar devices. Therefore, as a rare wide-bandgap p-type oxide semiconductor, NiO (3.7 eV) has garnered considerable attention. In view of the heterojunction device with Ga2O3 (4.5–5.0 eV), a p-type material with a large bandgap is desired. Herein, we report the growth of a Ni1-xMgxO thin film, which has a larger bandgap than NiO, on α-Al2O3 (0001) substrates that was developed using the mist chemical vapor deposition method. The Ni1-xMgxO thin films epitaxially grown on α-Al2O3 substrates showed crystallographic orientation relationships identical to those of NiO thin films. The Mg composition of Ni1-xMgxO was easily controlled by the Mg concentration of the precursor solution. The Ni1-xMgxO thin film with a higher Mg composition had a larger bandgap, and the bandgap reached 3.9 eV with a Ni1-xMgxO thin film with x = 0.28. In contrast to an undoped Ni1-xMgxO thin film showing insulating properties, the Li-doped Ni1-xMgxO thin film had resistivities of 101–105 Ω∙cm depending on the Li precursor concentration, suggesting that Li effectively acts as an acceptor.


1991 ◽  
Vol 243 ◽  
Author(s):  
L.A. Wills ◽  
B.W. Wessels ◽  
D.L. Schulz ◽  
T.J. Marks

AbstractBaTiO3 thin films have been prepared by low pressure organometallic chemical vapor deposition on (100) MgO and (100) LaAlO3 substrates using the volatile precursors, titanium(IV) tetraisopropoxide and barium (hexafluoroacetylacetonate)2 (tetraglyme). The phase composition and structure of the films depends on the reactant partial pressure, growth temperature, and substrate. High quality, epitaxial BaTiO3 films can be prepared in-situ on LaAlO3 as confirmed by x-ray diffraction measurements. These BaTiO3 films exhibit smooth surface morphologies as evidenced by scanning electron microscopy. Electrical resistivity measurements indicate that the films are semi-insulating.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52555-52560 ◽  
Author(s):  
Jianhua Zhang ◽  
Zhangfu Chen ◽  
Xiaoxue Xu ◽  
Wei Liao ◽  
Lianqiao Yang

In this paper, a novel and scalable method to fabricate graphene/carbon nanotube (CNT) hybrid transparent conductive films on Cu substrates, which combines electroplating and chemical vapor deposition (CVD) is proposed and demonstrated.


1990 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Masanori Nemoto ◽  
Mitsugu Yamanaka

Superconducting Bi-Sr-Ca-Cu-O thin films have been prepared for the first time by chemical vapor deposition using triphenyl bismuth and fluorocarbon-based chelates such as bis(hexafluoroacetylacetonate)strontium, bis(hexafluoroacetylacetonate)calcium, and bis(hexafluoroacetylacetonate)copper. After annealing in air, x-ray diffraction data reveal that the films deposited on (001) SrTiO3 substrates have preferential orientation of their crystalline c-axis perpendicular to the substrate surface. Four-probe resistivity measurements reveal the onset of superconductivity at 80 K and zero resistivity at 50 K.


1992 ◽  
Vol 275 ◽  
Author(s):  
D. L. Schulzi ◽  
B. Hano ◽  
D. Neumayer ◽  
B. J. Hinds ◽  
T. J. Markst ◽  
...  

ABSTRACTThe synthesis of superconducting Tl-Ba-Ca-Cu-O thin films on metal foils (Au and Ag) by metal-organic chemical vapor deposition (MOCVD) has been investigated. Ba-Ca-Cu-O-(F) films are first prepared via MOCVD using fluorinated “second generation” metal-organic precursors. After an intermediate anneal with water vapor-saturated oxygen to promote removal of F, Tl is introduced by annealing in the presence of a mixture of oxides (Tl2O3, BaO, CaO, CuO) of a specific composition. Characterization of the thin films by scanning electron microscopy, EDX, x-ray diffraction, and variable temperature magnetization measurements has been carried out. High temperature superconductor (HTS) films of Tl2Ba2Ca1Cu2O8−x on Au foil exhibit a magnetically derived Tc = 80K and a high degree of texturing with the crystallite c-axes oriented perpendicular to the substrate surface as evidenced by enhanced (000 x-ray diffraction reflections. Thin film coverage on Ag foil becomes non-contiguous during the (Tl2O3, BaO, CaO, CuO) mixture anneal.


2001 ◽  
Vol 672 ◽  
Author(s):  
Zhigang Xu ◽  
Q. Wei ◽  
Jag Sankar

ABSTRACTYttria fully stabilized zirconia (YSZ) thin films have been successfully synthesized with atmospheric combustion chemical vapor deposition (ACCVD) technique with liquid fuel. Key processing parameters, such as the ratio of oxygen to liquid fuel in the flame, the concentration of metal reagents in the solution, the temperature of the substrate and substrate material, have been investigated. The as-grown films are characterized with X-ray diffraction and scanning electron microscopy. Within the range of experimental parameters, the phase of the film is predominantly of cubic structure. The phase and crystallinity of the films are strongly dependent upon the experimental variables.


Sign in / Sign up

Export Citation Format

Share Document