scholarly journals Unveiling the role of boroxines in metal-free carbon–carbon homologations using diazo compounds and boronic acids

2017 ◽  
Vol 8 (9) ◽  
pp. 6071-6075 ◽  
Author(s):  
Claudio Bomio ◽  
Mikhail A. Kabeshov ◽  
Arthur R. Lit ◽  
Shing-Hing Lau ◽  
Janna Ehlert ◽  
...  

By means of computational and experimental mechanistic studies the fundamental role of boroxines in the reaction between diazo compounds and boronic acids was elucidated.

2016 ◽  
Vol 7 (9) ◽  
pp. 5680-5685 ◽  
Author(s):  
Clément Chauvier ◽  
Pierre Thuéry ◽  
Thibault Cantat

In the presence of dialkylboranes, formic acid is converted to formaldehyde and methanol derivatives. This is the first example of formate disproportionation under metal-free conditions. Mechanistic studies highlight the role of transient borohydrides in the reduction of formates and this is further shown in transfer hydroboration for aldehyde reduction.


2009 ◽  
Vol 1 (6) ◽  
pp. 494-499 ◽  
Author(s):  
José Barluenga ◽  
María Tomás-Gamasa ◽  
Fernando Aznar ◽  
Carlos Valdés

Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2373-2389 ◽  
Author(s):  
Carlos Valdés ◽  
Miguel Paraja ◽  
Manuel Plaza

The metal-free reaction between diazo compounds and boronic acids has been established in recent years as a powerful C(sp3)–C bond-forming reaction. This account covers the recent advances in this area. First, the various synthetic applications of reactions with N-sulfonylhydrazones as a convenient source of diazo compounds is discussed. These transformations can be regarded as reductive couplings of carbonyl compounds. Also covered is the incorporation of other mild sources of diazo compounds in these reactions: diazotization of amines and oxidation of hydrazones. Finally, the development of sequential and cascade processes is presented.1 Introduction2 Early Work: Reactions Between Alkylboranes and Diazo Compounds or N-Sulfonylhydrazones2.1 Reactions Between Alkylboranes and Diazo Compounds2.2 Reactions Between Alkylboranes and N-Sulfonylhydrazones3 Reactions of N-Sulfonylhydrazones and Diazo Compounds with Aryl and Alkylboronic Acids3.1 Reactions of Arylboroxines with Diazo Compounds3.2 Reductive Couplings of N-Sulfonylhydrazones with Aryl- and Alkylboronic Acids3.3 Three-Component Reactions Between α-Halotosylhydrazones, Boronic Acids and Indoles4 Reactions of N-Tosylhydrazones with Alkenylboronic Acids5 Synthesis of Allenes by Reactions with Alkynyl N-Nosylhydrazones6 Reactions with Diazo Compounds Generated by Diazotization of Primary Amines7 Reactions with Diazo Compounds Generated by Oxidation of ­Hydrazones8 Reactions with Trimethylsilyldiazomethane9 Cascade Cyclization Reactions with γ- and δ-Cyano-N-tosylhydrazones10 Summary and Outlook


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianbin Li ◽  
Chia-Yu Huang ◽  
Mohamad Ataya ◽  
Rustam Z. Khaliullin ◽  
Chao-Jun Li

AbstractCarboxylic acids are readily available, structurally diverse and shelf-stable; therefore, converting them to the isoelectronic boronic acids, which play pivotal roles in different settings, would be highly enabling. In contrast to the well-recognised decarboxylative borylation, the chemical space of carboxylic-to-boronic acid transformation via deoxygenation remains underexplored due to the thermodynamic and kinetic inertness of carboxylic C-O bonds. Herein, we report a deoxygenative borylation reaction of free carboxylic acids or their sodium salts to synthesise alkylboronates under metal-free conditions. Promoted by a uniquely Lewis acidic and strongly reducing diboron reagent, bis(catecholato)diboron (B2cat2), a library of aromatic carboxylic acids are converted to the benzylboronates. By leveraging the same borylative manifold, a facile triboration process with aliphatic carboxylic acids is also realised, diversifying the pool of available 1,1,2-alkyl(trisboronates) that were otherwise difficult to access. Detailed mechanistic studies reveal a stepwise C-O cleavage profile, which could inspire and encourage future endeavours on more appealing reductive functionalisation of oxygenated feedstocks.


2019 ◽  
Author(s):  
Andrew Romine ◽  
Kin Yang ◽  
Malkanthi Karunananda ◽  
Jason Chen ◽  
Keary Engle

A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, arene C–H olefination was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C–H olefination as the key step.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ariadna Recasens ◽  
Sean J. Humphrey ◽  
Michael Ellis ◽  
Monira Hoque ◽  
Ramzi H. Abbassi ◽  
...  

AbstractBoth tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2454-2459
Author(s):  
Zhe Wang ◽  
Qin-Kun Li ◽  
Chenhao Zhang ◽  
Zhihua Cheng ◽  
Weiyin Chen ◽  
...  

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Sami Lakhdar ◽  
William Lecroq ◽  
Jules Schleinitz ◽  
Mallaury Billoue ◽  
Anna Perfetto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document