Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black

ACS Catalysis ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2454-2459
Author(s):  
Zhe Wang ◽  
Qin-Kun Li ◽  
Chenhao Zhang ◽  
Zhihua Cheng ◽  
Weiyin Chen ◽  
...  
2019 ◽  
Vol 252 ◽  
pp. 128-137 ◽  
Author(s):  
André Torres-Pinto ◽  
Maria J. Sampaio ◽  
Cláudia G. Silva ◽  
Joaquim L. Faria ◽  
Adrián M.T. Silva

2020 ◽  
Vol 11 (3) ◽  
pp. 338-346 ◽  
Author(s):  
Robson S. Rocha ◽  
Ricardo B. Valim ◽  
Leandro C. Trevelin ◽  
Juliana R. Steter ◽  
Jussara F. Carneiro ◽  
...  

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Ioannis Papagiannis ◽  
Nikolaos Balis ◽  
Vassilios Dracopoulos ◽  
Panagiotis Lianos

Photoelectrochemical production of hydrogen peroxide was studied by using a cell functioning with a WO3 photoanode and an air breathing cathode made of carbon cloth with a hydrophobic layer of carbon black. The photoanode functioned in the absence of any sacrificial agent by water splitting, but the produced photocurrent was doubled in the presence of glycerol or ethanol. Hydrogen peroxide production was monitored in all cases, mainly in the presence of glycerol. The presence or absence of the organic fuel affected only the obtained photocurrent. The Faradaic efficiency for hydrogen peroxide production was the same in all cases, mounting up to 74%. The duplication of the photocurrent in the presence of biomass derivatives such as glycerol or ethanol and the fact that WO3 absorbed light in a substantial range of the visible spectrum promotes the presently studied system as a sustainable source of hydrogen peroxide production.


2020 ◽  
Vol 8 (40) ◽  
pp. 20849-20869 ◽  
Author(s):  
Yue Zhou ◽  
Ge Chen ◽  
Jiujun Zhang

Recent progress in the development of metal-free carbon catalysts for ORR to H2O2.


Ionics ◽  
2015 ◽  
Vol 21 (9) ◽  
pp. 2603-2607 ◽  
Author(s):  
K. Naga Mahesh ◽  
R. Balaji ◽  
K. S. Dhathathreyan

2019 ◽  
pp. 123-128
Author(s):  
M. N. Nagornaya ◽  
A. V. Myshliavtsev ◽  
S. Ya. Khodakova

The subject of the study were samples of channel technical carbon K354, furnace technical carbon N121 and experimental – based on TUN121, oxidized with active forms of oxygen. Samples of carbon black were studied in the composition of a rubber mixture based on BK 1675N butyl rubber. The purpose of this study was to determine the possibility of using oxidized technical carbon N121 in fillers of rubber based on butyl rubber, instead of carbon black K354. The physicochemical properties of the samples of technical carbon under study, the results of physical and mechanical tests, and the gas permeability tests of rubber mixtures filled with the samples under study are presented. A conclusion is made about the possibility of replacing channel technical carbon K354 with furnace black carbon N121 oxidized with 30% hydrogen peroxide.


Sign in / Sign up

Export Citation Format

Share Document