Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber

2017 ◽  
Vol 5 (26) ◽  
pp. 13439-13447 ◽  
Author(s):  
Jiaxing Song ◽  
Leijing Liu ◽  
Xiao-Feng Wang ◽  
Gang Chen ◽  
Wenjing Tian ◽  
...  

Although ZnO is a compatible electron transport layer (ETL) for perovskite solar cells (PSCs), the fact that MAPbI3 easily undergoes thermal decomposition on a low-temperature processed ZnO surface limits the use of one-step deposition of perovskite and hence the resulting photovoltaic performance. The triple cation perovskite prepared with a one-step deposition method is demonstrated to be a stable light absorber in highly efficient PSCs with low-temperature processed ZnO as the ETL.

2016 ◽  
Vol 9 (7) ◽  
pp. 2262-2266 ◽  
Author(s):  
Heetae Yoon ◽  
Seong Min Kang ◽  
Jong-Kwon Lee ◽  
Mansoo Choi

Hysteresis-free and highly efficient CH3NH3PbI3 perovskite solar cells employing a compact C60 material as an electron transport layer have been developed for the first time using both rigid glass and plastic substrates.


2019 ◽  
Vol 7 (17) ◽  
pp. 5028-5036 ◽  
Author(s):  
M. Thambidurai ◽  
Shini Foo ◽  
K. M. Muhammed Salim ◽  
P. C. Harikesh ◽  
Annalisa Bruno ◽  
...  

Simultaneous improvement in transparency, conductivity, and energy level alignment was attained via a highly efficient AlIn-TiO2 ETL with the unrivaled PCE of 19%.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document