A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability

The Analyst ◽  
2019 ◽  
Vol 144 (9) ◽  
pp. 3144-3157 ◽  
Author(s):  
Byung Jun Kim ◽  
Ye Sung Lee ◽  
Alexander Zhbanov ◽  
Sung Yang

In this study, a microfluidic-based physiometer capable of measuring the whole blood viscosity, hematocrit, and red blood cell (RBC) deformability on a chip is introduced.

Author(s):  
Adam Attila Matrai ◽  
Gabor Varga ◽  
Bence Tanczos ◽  
Barbara Barath ◽  
Adam Varga ◽  
...  

BACKGROUND: The effects of temperature on micro-rheological variables have not been completely revealed yet. OBJECTIVE: To investigate micro-rheological effects of heat treatment in human, rat, dog, and porcine blood samples. METHODS: Red blood cell (RBC) - buffer suspensions were prepared and immersed in a 37, 40, and 43°C heat-controlled water bath for 10 minutes. Deformability, as well as mechanical stability of RBCs were measured in ektacytometer. These tests were also examined in whole blood samples at various temperatures, gradually between 37 and 45°C in the ektacytometer. RESULTS: RBC deformability significantly worsened in the samples treated at 40 and 43°C degrees, more expressed in human, porcine, rat, and in smaller degree in canine samples. The way of heating (incubation vs. ektacytometer temperation) and the composition of the sample (RBC-PBS suspension or whole blood) resulted in the different magnitude of RBC deformability deterioration. Heating affected RBC membrane (mechanical) stability, showing controversial alterations. CONCLUSION: Significant changes occur in RBC deformability by increasing temperature, showing inter-species differences. The magnitude of alterations is depending on the way of heating and the composition of the sample. The results may contribute to better understanding the micro-rheological deterioration in hyperthermia or fever.


2020 ◽  
Vol 95 (11) ◽  
pp. 1246-1256 ◽  
Author(s):  
Erdem Kucukal ◽  
Yuncheng Man ◽  
Ailis Hill ◽  
Shichen Liu ◽  
Allison Bode ◽  
...  

2003 ◽  
Vol 52 (8) ◽  
pp. 397-406 ◽  
Author(s):  
Nakamichi WATANABE ◽  
Katsura FUNAYAMA ◽  
Fumiko KIMURA ◽  
Yasushi ENDO ◽  
Kenshiro FUJIMOTO ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1001-1001
Author(s):  
Jon Detterich ◽  
Adam M Bush ◽  
Roberta Miyeko Kato ◽  
Rose Wenby ◽  
Thomas D. Coates ◽  
...  

Abstract Abstract 1001 Introduction: SCT occurs in 8% of African Americans and is not commonly associated with clinical disease. Nonetheless, the United States Armed Forces has reported that SCT conveys a 30-fold risk of sudden cardiac arrest and a 200-fold risk from exertional rhabdomyolysis. In fact, rhabdomyolysis in athletes with SCT has been the principal cause of death in NCAA football players in the last decade, leading to recently mandated SCT testing in all Division-1 players. In SCT, RBC sickle only under extreme conditions and with slow kinetics. Therefore, rhabdomyolysis most likely occurs in SCT when a “perfect storm” of factors converges to critically imbalance oxygen supply and demand in muscles. We hypothesize that in SCT subjects, abnormal RBC rheology, particularly aggregation and deformability, play an important role in abnormal muscle blood flow supply and distribution to exercising muscle. To test this hypothesis, we examined whole blood viscosity, RBC aggregation, and RBC deformability in 11 SCT and 10 control subjects prior to and following maximum handgrip exercise. Methods: Maximum voluntary contraction (MVC) was assessed by handgrip dynamometer in the dominant arm. Baseline blood was collected for CBC, whole blood viscosity, RBC aggregation, and RBC deformability. Patients then maintained 60% MVC exercise until exhaustion. Following 8 minutes of recovery, a venous blood gas and blood for repeat viscosity assessments was collected from the antecubital fossa of the exercising limb. Whole blood viscosity over a shear rate range of 1–1, 000 1/s was determined by an automated tube viscometer, RBC deformability from 0.5–50 Pa via laser ektacytometry (LORCA) and RBC aggregation in both autologous plasma and 3% dextran 70 kDa using an automated cone-place aggregometer (Myrenne). Aggregation measurements included extent at stasis (M), strength of aggregation (GT min) and kinetics (T ½). Results: Baseline CBC and aggregation values are summarized in Table 1. Both static RBC aggregation in plasma and RBC aggregation in dextran (aggregability) were significantly increased in SCT (Table 1). The rate of aggregation formation trended higher in SCT but the strength of aggregation was not different between the two groups. In SCT subjects, red cell deformability was impaired at low shear stress but greater than controls at higher shear stress (Figure 1). Red cell deformability was completely independent of oxygenation status states in both SCT and control subjects. Whole blood viscosity did not different between the two groups whether oxygenated or deoxygenated and prior to or following handgrip exercise. Discussion: Three important hemorheological differences were observed for SCT subjects versus controls: a) RBC deformability was below control at low stress levels yet greater than control at higher stress; b) The extent of RBC aggregation in autologous plasma was about 40% greater; c) The extent of RBC aggregation for washed RBC re-suspended in an aggregating medium (i.e., 3% dextran 70 kDa) was about 30% higher. RBC deformability is a major determinant of in vivo blood flow dynamics, especially in the microcirculation; decreased deformability adversely affects tissue perfusion. RBC aggregation is also an important determinant since it affects both resistance to blood flow and RBC distribution in a vascular bed (e.g., plasma skimming). The finding of greater aggregability (i.e., higher aggregation in the defined dextran medium) indicates that RBC in SCT have an altered membrane surface in which the penetration of this polymer into the glycocalyx is abnormal. The combined effects of these three rheological parameters is likely to impair in vivo blood flow in SCT, perhaps to a degree resulting in pathophysiological changes of the cardiovascular system. Disclosures: Coates: Novartis: Speakers Bureau; Apopharma: Consultancy. Wood:Ferrokin Biosciences: Consultancy; Shire: Consultancy; Apotex: Consultancy, Honoraria; Novartis: Honoraria, Research Funding.


2019 ◽  
pp. 27-30

VARIACIÓN DE LA VISCOSIDAD PLASMÁTICA EN CONEJOS INDUCIDOS A UNA DIABETES ALOXÁNICA VARIATION OF PLASMATIC VISCOSITY IN ALLOXAN-INDUCED DIABETIC RABBITS Gonzales Medrano, M. Fernando, Infantas Mesías, Delia y Sam Torres, Rosa DOI: https://doi.org/10.33017/RevECIPeru2009.0006/ RESUMEN Se investigó la variación de la viscosidad plasmática en conejos inducidos a una diabetes aloxánica. Adicionalmente, los valores de hematocrito, densidad plasmática y deformabilidad celular de glóbulos rojos fueron estimados. Los animales diabéticos presentaron pérdida de peso mientras que la densidad y viscosidad plasmática se incrementaron. Los valores de hematocrito no mostraron diferencias estadísticas significativas. Estos resultados sugieren que el incremento del valor de la viscosidad plasmática es un factor involucrado en la viscosidad sanguínea descrita para pacientes diabéticos con descompensación. Palabras clave: Viscosidad plasmática, diabetes aloxánica, conejos. ABSTRACT The variation of plasmatic viscosity in alloxan-induced diabetic rabbits was investigated. Additionally, hematocrit values, plasmatic density and red blood cell deformability were estimated. The diabetic animals showed loss weight whereas the density and viscosity of plasma were increased. The Hematocrit values did not show any significative statistical differences. These results suggest the increased level of plasmatic viscosity is an involucrated factor in the blood viscosity described for decompensated diabetic patients. Keywords: Plasmatic viscosity, alloxan-diabetes, rabbits.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Erik S. Lamoureux ◽  
Emel Islamzada ◽  
Matthew V.J. Wiens ◽  
Kerryn Matthews ◽  
Simon P. Duffy ◽  
...  

Red blood cells (RBCs) must be highly deformable to transit through the microvasculature to deliver oxygen to tissues. The loss of RBC deformability resulting from pathology, natural aging, or storage...


Sign in / Sign up

Export Citation Format

Share Document