Oil/water separation based on natural materials with super-wettability: recent advances

2018 ◽  
Vol 20 (39) ◽  
pp. 25140-25163 ◽  
Author(s):  
Jiale Yong ◽  
Jinglan Huo ◽  
Feng Chen ◽  
Qing Yang ◽  
Xun Hou

This review summarizes the recent developments of oil/water separation by natural superwetting materials, including the superwettability, separating method, and mechanism.

2017 ◽  
Vol 53 ◽  
pp. 37-50 ◽  
Author(s):  
Yunrui Han ◽  
Limin He ◽  
Xiaoming Luo ◽  
Yuling Lü ◽  
Kaiyue Shi ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1554 ◽  
Author(s):  
Ali Sami Alnaser ◽  
Sharjeel Ahmed Khan ◽  
Rashid Ashirovich Ganeev ◽  
Emmanuel Stratakis

Femtosecond (FS) laser-induced surface structuring is a robust, maskless, non-contact, and single-step process for producing micro- and nanoscale structures on a material’s surface, which remarkably alters the optical, chemical, wetting, and tribological properties of that material. Wettability control, in particular, is of high significance in various applications, including self-cleaning, anti-fouling, anti-icing, anti-corrosion, and, recently, oil–water separation. Due to growing energy demands and rapid industrialization, oil spill accidents and organic industrial discharges frequently take place. This poses an imminent threat to the environment and has adverse effects on the economy and the ecosystem. Oil–water separation and oil waste management require mechanically robust, durable, low-cost, and highly efficient oil–water manipulation systems. To address this challenge superhydrophobic–superoleophilic and superhydrophilic–underwater superoleophobic membrane filters have shown promising results. However, the recyclability and durability issues of such filters are limiting factors in their industrial application, as well as in their use in oil spill accidents. In this article, we review and discuss the recent progress in the application of FS laser surface structuring in producing durable and robust oil–water separation membrane filters. The wide variety of surface structures produced by FS laser nano- and micromachining are initially presented here, while the excellent wetting characteristics shown by specific femtosecond-induced structures are demonstrated. Subsequently, the working principles of oil–water separation membranes are elaborated, and the most recent advances in the topic are analyzed and discussed.


2020 ◽  
Vol 60 (4) ◽  
pp. 671-716 ◽  
Author(s):  
Ali A. El-Samak ◽  
Deepalekshmi Ponnamma ◽  
Mohammad K. Hassan ◽  
Ali Ammar ◽  
Samer Adham ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 238
Author(s):  
Ansar Abbas ◽  
Chen Zhang ◽  
Muhammad Asad ◽  
Ahsan Waqas ◽  
Asma Khatoon ◽  
...  

Inspired by nature, significant research efforts have been made to discover the diverse range of biomaterials for various biomedical applications such as drug development, disease diagnosis, biomedical testing, therapy, etc. Polymers as bioinspired materials with extreme wettable properties, such as superhydrophilic and superhydrophobic surfaces, have received considerable interest in the past due to their multiple applications in anti-fogging, anti-icing, self-cleaning, oil–water separation, biosensing, and effective transportation of water. Apart from the numerous technological applications for extreme wetting and self-cleaning products, recently, super-wettable surfaces based on polymeric materials have also emerged as excellent candidates in studying biological processes. In this review, we systematically illustrate the designing and processing of artificial, super-wettable surfaces by using different polymeric materials for a variety of biomedical applications including tissue engineering, drug/gene delivery, molecular recognition, and diagnosis. Special attention has been paid to applications concerning the identification, control, and analysis of exceedingly small molecular amounts and applications permitting high cell and biomaterial cell screening. Current outlook and future prospects are also provided.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 425
Author(s):  
Xianfeng Luo ◽  
Zhongpeng Zhu ◽  
Ye Tian ◽  
Jun You ◽  
Lei Jiang

Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. Herein, various functions and applications of TiO2 with superwettability are summarized and described in different sections. First, a brief introduction about the discovery of photoelectrodes made of TiO2 is revealed. The ultra-fast spreading behaviors on TiO2 are shown in the part of ultra-fast spreading with superwettability. The part of controllable wettability introduces the controllable wettability of TiO2-derived materials and their related applications. Recent developments of interfacial photocatalysis and photoelectrochemical reactions with TiO2 are presented in the part of interfacial photocatalysis and photoelectrochemical reactions. The part of nanochannels for ion rectification describes ion transportation in nanochannels based on TiO2-derived materials. In the final section, a brief conclusion and a future outlook based on the superwettability of TiO2 are shown.


Sign in / Sign up

Export Citation Format

Share Document