scholarly journals Quantitative analysis of 14N quadrupolar coupling using 1H detected 14N solid-state NMR

2019 ◽  
Vol 21 (11) ◽  
pp. 5941-5949 ◽  
Author(s):  
James A. Jarvis ◽  
Maria Concistre ◽  
Ibraheem M. Haies ◽  
Richard W. Bounds ◽  
Ilya Kuprov ◽  
...  

Quantitative analysis of the 14N quadrupolar interactions using proton detected 14N magic-angle spinning NMR and high-performance numerical simulations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksander Jaworski ◽  
Jędrzej Piątek ◽  
Liuda Mereacre ◽  
Cordula Braun ◽  
Adam Slabon

Abstract We report the first magic-angle spinning (MAS) nuclear magnetic resonance (NMR) study on Sn(NCN). In this compound the spatially elongated (NCN)2− ion is assumed to develop two distinct forms: either cyanamide (N≡C–N2−) or carbodiimide (−N=C=N−). Our 14N MAS NMR results reveal that in Sn(NCN) the (NCN)2− groups exist exclusively in the form of symmetric carbodiimide ions with two equivalent nitrogen sites, which is in agreement with the X-ray diffraction data. The 14N quadrupolar coupling constant | C Q | $\vert {C}_{\text{Q}}\vert $  ≈ 1.1 MHz for the −N=C=N− ion in Sn(NCN) is low when compared to those observed in molecular compounds that comprise cyano-type N≡C– moieties ( | C Q | $\vert {C}_{\text{Q}}\vert $  > 3.5 MHz). This together with the information from 14N and 13C chemical shifts indicates that solid-state NMR is a powerful tool for providing atomic-level insights into anion species present in these compounds. The experimental NMR results are corroborated by high-level calculations with quantum chemistry methods.



2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.





1985 ◽  
Vol 61 (3) ◽  
pp. 440-447 ◽  
Author(s):  
Nikolaus M Szeverenyi ◽  
Ad Bax ◽  
Gary E Maciel


2016 ◽  
Vol 18 (6) ◽  
pp. 4902-4910 ◽  
Author(s):  
J. Ole Brauckmann ◽  
J. W. G. (Hans) Janssen ◽  
Arno P. M. Kentgens

To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed.



Sign in / Sign up

Export Citation Format

Share Document