quadrupolar coupling
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksander Jaworski ◽  
Jędrzej Piątek ◽  
Liuda Mereacre ◽  
Cordula Braun ◽  
Adam Slabon

Abstract We report the first magic-angle spinning (MAS) nuclear magnetic resonance (NMR) study on Sn(NCN). In this compound the spatially elongated (NCN)2− ion is assumed to develop two distinct forms: either cyanamide (N≡C–N2−) or carbodiimide (−N=C=N−). Our 14N MAS NMR results reveal that in Sn(NCN) the (NCN)2− groups exist exclusively in the form of symmetric carbodiimide ions with two equivalent nitrogen sites, which is in agreement with the X-ray diffraction data. The 14N quadrupolar coupling constant | C Q | $\vert {C}_{\text{Q}}\vert $  ≈ 1.1 MHz for the −N=C=N− ion in Sn(NCN) is low when compared to those observed in molecular compounds that comprise cyano-type N≡C– moieties ( | C Q | $\vert {C}_{\text{Q}}\vert $  > 3.5 MHz). This together with the information from 14N and 13C chemical shifts indicates that solid-state NMR is a powerful tool for providing atomic-level insights into anion species present in these compounds. The experimental NMR results are corroborated by high-level calculations with quantum chemistry methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Bräuniger ◽  
Philipp Bielec ◽  
Otto E. O. Zeman ◽  
Igor L. Moudrakovski ◽  
Constantin Hoch ◽  
...  

Abstract The compounds ScCl3·3H2O (SCTH) and [{Sc(H2O)5(μ-OH)}2]Cl4·2H2O (SCOH), have been synthesised and characterised by single-crystal XRD, 45Sc NMR spectroscopy and DFT calculations, with the crystal structure of SCTH reported here for the first time. From 45Sc NMR measurements under static and MAS conditions, both chemical shift and quadrupolar coupling parameters have been determined. The quadrupolar coupling constants χ for the octahedrally coordinated scandium sites in SCTH are 2.0 ± 0.1 MHz for Sc(1) and 3.81 ± 0.05 MHz for Sc(2). For SCOH, where the hepta-coordination of the single scandium site constitutes a less symmetric electronic environment, 14.68 ± 0.05 MHz was found. DFT calculations for the static SCTH structure consistently overestimate the quadrupolar coupling constants, indicating the possible presence of crystal water dynamics on the NMR time scale.


2020 ◽  
Vol 6 (4) ◽  
pp. 58
Author(s):  
Tyler M. Ozvat ◽  
Spencer H. Johnson ◽  
Anthony K. Rappé ◽  
Joseph M. Zadrozny

Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T1 (spin–lattice) and T2 (spin–spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T1 and T2 increase with temperature for 1–6 between 10 and 60 °C, with the greatest ΔT1/ΔT and ΔT2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T1/°C and 6(1)%T2/°C, respectively. Temperature-dependent T2* (dephasing time) analyses were also made, revealing the highest ΔT2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe2qQ/ΔT, enable insight into the origins of the relative ΔT1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5666 ◽  
Author(s):  
Kuizhi Chen

NMR is a powerful spectroscopic method that can provide information on the structural disorder in solids, complementing scattering and diffraction techniques. The structural disorder in solids can generate a dispersion of local magnetic and electric fields, resulting in a distribution of isotropic chemical shift δiso and quadrupolar coupling CQ. For spin-1/2 nuclei, the NMR linewidth and shape under high-resolution magic-angle spinning (MAS) reflects the distributions of isotropic chemical shift, providing a rich source of disorder information. For quadrupolar nuclei, the second-order quadrupolar broadening remains present even under MAS. In addition to isotropic chemical shift, structural disorder can impact the electric field gradient (EFG) and consequently the quadrupolar NMR parameters. The distributions of quadrupolar coupling and isotropic chemical shift are superimposed with the second-order quadrupolar broadening, but can be potentially characterized by MQMAS (multiple-quantum magic-angle spinning) spectroscopy. We review analyses of NMR lineshapes in 2D DQ–SQ (double-quantum single-quantum) and MQMAS spectroscopies, to provide a guide for more general lineshape analysis. In addition, methods to enhance the spectral resolution and sensitivity for quadrupolar nuclei are discussed, including NMR pulse techniques and the application of high magnetic fields. The role of magnetic field strength and its impact on the strategy of determining optimum NMR methods for disorder characterization are also discussed.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 302
Author(s):  
Otto E. O. Zeman ◽  
Viktoria Kainz ◽  
Thomas Bräuniger

The electronic surroundings of phosphorus and lithium atoms in the ionic conductor lithium dihydrogen phosphate (LDP) have been studied by single-crystal nuclear magnetic resonance (NMR) spectroscopy at room temperature. From orientation-dependent NMR spectra of a large homegrown LDP single crystal, the full 31P chemical shift (CS) and 7Li quadrupole coupling (QC) tensor was determined, using a global fit over three rotation patterns. The resulting CS tensor is characterized by its three eigenvalues: δ 11 P A S = ( 67.0 ± 0.6 ) ppm, δ 22 P A S = ( 13.9 ± 1.5 ) ppm, and δ 33 P A S = ( − 78.7 ± 0.9 ) ppm. All eigenvalues have also been verified by magic-angle spinning NMR on a polycrystalline sample, using Herzfeld–Berger analysis of the rotational side band pattern. The resulting 7Li QC tensor is characterized by its quadrupolar coupling constant χ = Q 33 P A S = ( − 71 ± 1 ) kHz and the two eigenvalues Q 11 P A S = ( 22.3 ± 0.9 ) kHz, and Q 22 P A S = ( 48.4 ± 0.8 ) kHz. The initially unknown orientation of the mounted crystal, expressed by the orientation of the rotation axis in the orthorhombic crystal frame, was included in the global data fit as well, thus obtaining it from NMR data only.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 469 ◽  
Author(s):  
Otto E. O. Zeman ◽  
Igor L. Moudrakovski ◽  
Carsten Hartmann ◽  
Sylvio Indris ◽  
Thomas Bräuniger

Both the chemical shift and quadrupole coupling tensors for 14 N and 27 Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of 14 N ( I = 1 ) and 27 Al ( I = 5 / 2 ), the quadrupolar coupling constants were determined to χ ( 14 N ) = ( 8.19 ± 0.02 ) kHz, and χ ( 27 Al ) = ( 1.914 ± 0.001 ) MHz. The chemical shift parameters obtained from the data fit were δ i s o = − ( 292.6 ± 0.6 ) ppm and δ Δ = − ( 1.9 ± 1.1 ) ppm for 14 N, and (after correcting for the second-order quadrupolar shift) δ i s o = ( 113.6 ± 0.3 ) ppm and δ Δ = ( 12.7 ± 0.6 ) ppm for 27 Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for 27 Al with χ ¯ calc = ( 1.791 ± 0.003 ) MHz, but not for 14 N with χ ¯ calc = − ( 19.5 ± 3.3 ) kHz.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4399 ◽  
Author(s):  
Ibon Alkorta ◽  
José Elguero ◽  
Manuel Yáñez ◽  
Otilia Mó ◽  
M. Merced Montero-Campillo

Relativistic effects are found to be important for the estimation of NMR parameters in halogen-bonded complexes, mainly when they involve the heavier elements, iodine and astatine. A detailed study of 60 binary complexes formed between dihalogen molecules (XY with X, Y = F, Cl, Br, I and At) and four Lewis bases (NH3, H2O, PH3 and SH2) was carried out at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP computational level to show the extent of these effects. The NMR parameters (shielding and nuclear quadrupolar coupling constants) were computed using the relativistic Hamiltonian ZORA and compared to the values obtained with a non-relativistic Hamiltonian. The results show a mixture of the importance of the relativistic corrections as both the size of the halogen atom and the proximity of this atom to the basic site of the Lewis base increase.


2019 ◽  
Vol 74 (5) ◽  
pp. 421-425 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Daisuke Aoki ◽  
Kazuko Nakazono ◽  
Toshikazu Takata

Abstract33S nuclear quadrupole resonance (NQR) frequencies of 33S-enriched S-4-phenyl 4-toluenethiosulfonate were observed in the range of 22.96–23.31 MHz at temperatures between 110 and 300 K. A single sharp signal was observed at all the temperatures. The two-dimensional (2D) nutation echo method was applied at 150 K, providing the 33S electric field gradient (EFG) tensor information, the quadrupolar coupling constant, CQ, of 42.3 MHz and the asymmetry parameter, ηQ, of 0.80(9). Quantum chemical calculations were performed to obtain the 33S EFG tensor orientations with respect to the molecular frame.


2019 ◽  
Vol 21 (12) ◽  
pp. 6319-6326 ◽  
Author(s):  
Sean T. Holmes ◽  
Wei D. Wang ◽  
Guangjin Hou ◽  
Cecil Dybowski ◽  
Wei Wang ◽  
...  

We combine experimental and computational determination of 43Ca solid-state NMR parameters (chemical shift tensors, quadrupolar coupling tensors, and Euler angles) to constrain the structure of the local calcium–ligand coordination environment.


2019 ◽  
Vol 21 (11) ◽  
pp. 5941-5949 ◽  
Author(s):  
James A. Jarvis ◽  
Maria Concistre ◽  
Ibraheem M. Haies ◽  
Richard W. Bounds ◽  
Ilya Kuprov ◽  
...  

Quantitative analysis of the 14N quadrupolar interactions using proton detected 14N magic-angle spinning NMR and high-performance numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document