scholarly journals Hydrogen storage mechanism and diffusion in metal–organic frameworks

2019 ◽  
Vol 21 (15) ◽  
pp. 7756-7764 ◽  
Author(s):  
Kenichi Koizumi ◽  
Katsuyuki Nobusada ◽  
Mauro Boero

Diffusion and storage of hydrogen molecules in metal organic frameworks are crucial for the development of next-generation energy storage devices.

Nanoscale ◽  
2020 ◽  
Vol 12 (34) ◽  
pp. 17649-17662 ◽  
Author(s):  
Jayesh Cherusseri ◽  
Deepak Pandey ◽  
Kowsik Sambath Kumar ◽  
Jayan Thomas ◽  
Lei Zhai

Metal–organic frameworks are emerging players in the fabrication of flexible energy storage devices to power flexible and wearable electronics.


2017 ◽  
Vol 5 (3) ◽  
pp. 1094-1102 ◽  
Author(s):  
Yang Jiao ◽  
Jian Pei ◽  
Dahong Chen ◽  
Chunshuang Yan ◽  
Yongyuan Hu ◽  
...  

Metal–organic frameworks (MOFs) have obtained increasing attention as a kind of novel electrode material for energy storage devices.


2019 ◽  
Vol 21 ◽  
pp. 632-646 ◽  
Author(s):  
Tahira Mehtab ◽  
Ghulam Yasin ◽  
Muhammad Arif ◽  
Muhammad Shakeel ◽  
Rashid Mustafa Korai ◽  
...  

2021 ◽  
Vol 37 ◽  
pp. 396-416 ◽  
Author(s):  
Mandira Majumder ◽  
Mysore Sridhar Santosh ◽  
Ramarao Viswanatha ◽  
Anukul K. Thakur ◽  
Deepak P. Dubal ◽  
...  

Author(s):  
Rafael Vargas-Bernal

An analysis of the contribution that metal-organic frameworks (MOFs) have made to the development of energy storage devices over the past two decades such as rechargeable batteries and supercapacitors is presented here. This chapter reviews the different versions of electrode manufacturing based on metal-organic frameworks to be used in the design and manufacture of rechargeable batteries and supercapacitors. The MOFs examined in this chapter include those based on MOF-derived materials, MOF-based composites, and conductive MOFs. Despite the significant progress that has been achieved so far, many tasks must be made to reach total security so that performance parameters required for optimal performance of rechargeable batteries and supercapacitors in commercial, industrial, and military applications. Therefore, innovative conceptions of the actions that must be performed are explored in this chapter.


2018 ◽  
Vol 6 (37) ◽  
pp. 17959-17966 ◽  
Author(s):  
Youpeng Li ◽  
Chenghao Yang ◽  
Fenghua Zheng ◽  
Xing Ou ◽  
Qichang Pan ◽  
...  

Potassium ion batteries (PIBs) have been regarded as promising energy storage devices for large-scale energy storage owing to the abundance of potassium resources.


MRS Advances ◽  
2017 ◽  
Vol 2 (54) ◽  
pp. 3283-3289
Author(s):  
Youning Gong ◽  
Qiang Fu ◽  
Chunxu Pan

ABSTRACTSupercapacitor is a newly-developed device for electrochemical energy storage with high power density, long life span, as well as rapid capture and storage of energy. Carbon-based materials, from carbon nanospheres, nanotubes and nanofibers to graphene, are the most commonly used electrode materials for supercapacitors. Our group has engaged in the research of carbon nanomaterials over the past decade. Herein we summarize some typical carbon nanomaterials and their synthetic routes based on our published works, which is expected to provide the theoretical and experimental basis for further applications on carbon-based energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document