Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium–sulfur batteries

2019 ◽  
Vol 43 (3) ◽  
pp. 1380-1387 ◽  
Author(s):  
Jun Zhang ◽  
Jinxin Guo ◽  
Yang Xia ◽  
Yongping Gan ◽  
Hui Huang ◽  
...  

Hierarchically assembled carbon nanosheets with a high surface area and an ultra large pore volume were derived by the direct carbonization of an adipic acid and zinc powder mixture. This structure enables fast ion and electron kinetics, resulting in an enhanced electrochemical performance of lithium–sulfur batteries.

2007 ◽  
Vol 100 (1-3) ◽  
pp. 1-5 ◽  
Author(s):  
Jun Jie Niu ◽  
Jian Nong Wang ◽  
Ying Jiang ◽  
Lian Feng Su ◽  
Jie Ma

2014 ◽  
Vol 936 ◽  
pp. 369-373 ◽  
Author(s):  
Shao Wu Ma ◽  
Dong Lin Zhao ◽  
Ning Na Yao ◽  
Li Xu

The graphene/sulfur nanocomposite has been synthesized by heating a mixture of graphene sheets and elemental sulfur. The morphology, structure and electrochemical performance of graphene/sulfur nanocomposite as cathode material for lithium-sulfur batteries were systematically investigated by field-emission scanning electron microscope, X-ray diffraction and a variety of electrochemical testing techniques. The graphene/sulfur nanocomposite cathodes display a high reversible capacity of 800-1200 mAh g-1, and stable cycling for more than 100 deep cycles at 0.1 C. The graphene sheets have good conductivity and an extremely high surface area, and provide a robust electron transport network. The graphene network also accommodates the volume change of the electrode during the Li-S electrochemical reaction.


2020 ◽  
Vol 56 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Bin Wang ◽  
Xiu-Liang Lv ◽  
Jie Lv ◽  
Li Ma ◽  
Rui-Biao Lin ◽  
...  

A highly chemically and thermally stable mesoporous hydrogen-bonded organic framework with a high surface area and a large pore volume has been rationally designed and constructed.


2016 ◽  
Vol 178 ◽  
pp. 248-251 ◽  
Author(s):  
Guohui Cai ◽  
Xiaohai Zheng ◽  
Yong Zheng ◽  
Yihong Xiao ◽  
Ying Zheng

Sign in / Sign up

Export Citation Format

Share Document