A selective and sensitive peptide-based fluorescent chemical DSH sensor for detection of zinc ions and application in vitro and in vivo

2019 ◽  
Vol 43 (7) ◽  
pp. 3071-3077 ◽  
Author(s):  
Lili Zhang ◽  
Jun Cao ◽  
Kai Chen ◽  
Yi Liu ◽  
Yushu Ge ◽  
...  

Here we report the design and synthesis of a peptide-based fluorescent chemical sensor (DSH sensor: Dansyl-Ser-Pro-Gly-His-Trp-Gly) for detecting Zn2+, based on fluorescence resonance energy transfer (FRET) from tryptophan (donor) to the dansyl fluorophore (acceptor).

2009 ◽  
Vol 284 (24) ◽  
pp. 16473-16481 ◽  
Author(s):  
Zhiqiang Qu ◽  
Wei Cheng ◽  
Yuanyuan Cui ◽  
Yuanyuan Cui ◽  
Jie Zheng

Mutations in the human bestrophin 1 (hBest1) chloride channel cause Best vitelliform macular dystrophy. Although mutations in its transmembrane domains were found to alter biophysical properties of the channel, the mechanism for disease-causing mutations in its N and C termini remains elusive. We hypothesized that these mutations lead to channel dysfunction through disruption of an N-C-terminal interaction. Here, we present data demonstrating that hBest1 N and C termini indeed interact both in vivo and in vitro. In addition, using a spectrum-based fluorescence resonance energy transfer method, we showed that functional hBest1 channels in the plasma membrane were multimers. Disease-causing mutations in the N terminus (R19C, R25C, and K30C) and the C terminus (G299E, D301N, and D312N) caused channel dysfunction and disruption of the N-C interaction. Consistent with the functional and biochemical results, mutants D301N and D312N clearly reduced fluorescence resonance energy transfer signal, indicating that the N-C interaction was indeed perturbed. These results suggest that hBest1 functions as a multimer in the plasma membrane, and disruption of the N-C interaction by mutations leads to hBest1 channel dysfunction.


2019 ◽  
Vol 2 (3) ◽  
pp. 1131-1140 ◽  
Author(s):  
Edyta Swider ◽  
Sanish Maharjan ◽  
Karlijne Houkes ◽  
Nicolaas Koen van Riessen ◽  
Carl Figdor ◽  
...  

2006 ◽  
Vol 20 (6) ◽  
pp. 1218-1230 ◽  
Author(s):  
Alicja J. Copik ◽  
M. Scott Webb ◽  
Aaron L. Miller ◽  
Yongxin Wang ◽  
Raj Kumar ◽  
...  

Abstract The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.


2005 ◽  
Vol 79 (14) ◽  
pp. 8909-8919 ◽  
Author(s):  
Billy T. Dye ◽  
David J. Miller ◽  
Paul Ahlquist

ABSTRACT Flock house virus (FHV) is the best-characterized member of the Nodaviridae, a family of small, positive-strand RNA viruses. Unlike most RNA viruses, FHV encodes only a single polypeptide, protein A, that is required for RNA replication. Protein A contains a C-proximal RNA-dependent RNA polymerase domain and localizes via an N-terminal transmembrane domain to the outer mitochondrial membrane, where FHV RNA replication takes place in association with invaginations referred to as spherules. We demonstrate here that protein A self-interacts in vivo by using flow cytometric analysis of fluorescence resonance energy transfer (FRET), spectrofluorometric analysis of bioluminescence resonance energy transfer, and coimmunoprecipitation. Several nonoverlapping protein A sequences were able to independently direct protein-protein interaction, including an N-terminal region previously shown to be sufficient for localization to the outer mitochondrial membrane (D. J. Miller and P. Ahlquist, J. Virol. 76:9856-9867, 2000). Mutations in protein A that diminished FRET also diminished FHV RNA replication, a finding consistent with an important role for protein A self-interaction in FHV RNA synthesis. Thus, the results imply that FHV protein A functions as a multimer rather than as a monomer at one or more steps in RNA replication.


2007 ◽  
Vol 407 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Michael Russwurm ◽  
Florian Mullershausen ◽  
Andreas Friebe ◽  
Ronald Jäger ◽  
Corina Russwurm ◽  
...  

The intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive. However, the GAF-derived sensors were unable to be used to study cGMP dynamics because of slow response kinetics to cGMP. Out of 24 cGMP-responsive constructs derived from cNMP-BDs, three were selected to cover a range of cGMP affinities with an EC50 between 500 nM and 6 μM. These indicators possess excellent specifity for cGMP, fast binding kinetics and twice the dynamic range of existing cGMP sensors. The in vivo performance of these new indicators is demonstrated in living cells and validated by comparison with cGMP dynamics as measured by radioimmunoassays.


2005 ◽  
Vol 25 (8) ◽  
pp. 2946-2956 ◽  
Author(s):  
Aikaterini Zoumi ◽  
Shrimati Datta ◽  
Lih-Huei L. Liaw ◽  
Cristen J. Wu ◽  
Gopi Manthripragada ◽  
...  

ABSTRACT Sterol regulatory element-binding proteins (SREBPs) are a subfamily of basic helix-loop-helix-leucine zipper proteins that regulate lipid metabolism. We show novel evidence of the in vivo occurrence and subnuclear spatial localization of both exogenously expressed SREBP-1a and -2 homodimers and heterodimers obtained by two-photon imaging and spectroscopy fluorescence resonance energy transfer. SREBP-1a homodimers localize diffusely in the nucleus, whereas SREBP-2 homodimers and the SREBP-1a/SREBP-2 heterodimer localize predominantly to nuclear speckles or foci, with some cells showing a diffuse pattern. We also used tethered SREBP dimers to demonstrate that both homo- and heterodimeric SREBPs activate transcription in vivo. Ultrastructural analysis revealed that the punctate foci containing SREBP-2 are electron-dense nuclear bodies, similar or identical to structures containing the promyelocyte (PML) protein. Immunofluorescence studies suggest that a dynamic interplay exists between PML, as well as another component of the PML-containing nuclear body, SUMO-1, and SREBP-2 within these nuclear structures. These findings provide new insight into the overall process of transcriptional activation mediated by the SREBP family.


Sign in / Sign up

Export Citation Format

Share Document