Insight into fast ion migration kinetics of a new hybrid single Li-ion conductor based on aluminate complexes for solid-state Li-ion batteries

Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 5975-5984 ◽  
Author(s):  
Yancong Feng ◽  
Rui Tan ◽  
Yan Zhao ◽  
Rongtan Gao ◽  
Luyi Yang ◽  
...  

A novel hybrid single Li-ion conductor with high ion migration kinetics was prepared by mixing aluminate complexes–polyethylene glycol and polyethylene oxide. The new hopping transport mechanism was proposed.

2021 ◽  
Vol 9 ◽  
Author(s):  
Drace Penley ◽  
Stephen P. Vicchio ◽  
Rachel B. Getman ◽  
Burcu Gurkan

The energetics, coordination, and Raman vibrations of Li solvates in ionic liquid (IL) electrolytes are studied with density functional theory (DFT). Li+ coordination with asymmetric anions of cyano(trifluoromethanesulfonyl)imide ([CTFSI]) and (fluorosulfonyl)(trifluoro-methanesulfonyl)imide ([FTFSI]) is examined in contrast to their symmetric analogs of bis(trifluoromethanesulfonyl)imide ([TFSI]), bis(fluorosulfonyl)imide ([FSI]), and dicyanamide ([DCA]). The dissociation energies that can be used to describe the solvation strength of Li+ are calculated on the basis of the energetics of the individual components and the Li solvate. The calculated dissociation energies are found to be similar for Li+-[FTFSI], Li+-[TFSI], and Li+-[FSI] where only Li+-O coordination exists. Increase in asymmetry and anion size by fluorination on one side of the [TFSI] anion does not result in significant differences in the dissociation energies. On the other hand, with [CTFSI], both Li+-O and Li+-N coordination are present, and the Li solvate has smaller dissociation energy than the solvation by [DCA] alone, [TFSI] alone, or a 1:1 mixture of [DCA]/[TFSI] anions. This finding suggests that the Li+ solvation can be weakened by asymmetric anions that promote competing coordination environments through enthalpic effects. Among the possible Li solvates of (Li[CTFSI]n)−(n−1), where n = 1, 2, 3, or 4, (Li[CTFSI]2)−1 is found to be the most stable with both monodentate and bidentate bonding possibilities. Based on this study, we hypothesize that the partial solvation and weakened solvation energetics by asymmetric anions may increase structural heterogeneity and fluctuations in Li solvates in IL electrolytes. These effects may further promote the Li+ hopping transport mechanism in concentrated and multicomponent IL electrolytes that is relevant to Li-ion batteries.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Yuefeng Su ◽  
Gang Chen ◽  
Lai Chen ◽  
Qi Shi ◽  
Zhao Lv ◽  
...  

2021 ◽  
Vol 125 (34) ◽  
pp. 18588-18596
Author(s):  
Lorena Alzate-Vargas ◽  
Samuel M. Blau ◽  
Evan Walter Clark Spotte-Smith ◽  
Srikanth Allu ◽  
Kristin A. Persson ◽  
...  

2022 ◽  
Vol 429 ◽  
pp. 132395
Author(s):  
Seongjoon So ◽  
Jaewook Ko ◽  
Yong Nam Ahn ◽  
Il Tae Kim ◽  
Jaehyun Hur

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1012
Author(s):  
Takuya Mabuchi ◽  
Koki Nakajima ◽  
Takashi Tokumasu

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.


2018 ◽  
Vol 6 (3) ◽  
pp. 1150-1160 ◽  
Author(s):  
Musheng Wu ◽  
Bo Xu ◽  
Xueling Lei ◽  
Kelvin Huang ◽  
Chuying Ouyang

Systematic study on bulk properties, defect chemistry and Li-ion transport mechanisms of a Li3OCl fast-ion conductor.


2020 ◽  
Vol 11 (29) ◽  
pp. 7665-7671 ◽  
Author(s):  
Zhiyong Wang ◽  
Gang Wang ◽  
Haoyuan Qi ◽  
Mao Wang ◽  
Mingchao Wang ◽  
...  

Ultrathin and large-sized 2D conjugated MOF single-crystalline nanosheets are synthesized, which allow fast ion diffusion and high utilization of active sites, and therefore exhibit remarkable performance for Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document