Tuning optimum transfection of gemini surfactant–phospholipid–DNA nanoparticles by validated theoretical modeling

Nanoscale ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 1037-1046 ◽  
Author(s):  
Sattar Taheri-Araghi ◽  
Ding-Wen Chen ◽  
Mohammad Kohandel ◽  
Sivabal Sivaloganathan ◽  
Marianna Foldvari

Coarse-grained mathematical modeling using the polymorphic structural features of gemini nanoparticles assists designing non-viral gene delivery systems with high transfection efficiency for applications in non-invasive gene therapy.

Author(s):  
Ilona Uzieliene ◽  
Ursule Kalvaityte ◽  
Eiva Bernotiene ◽  
Ali Mobasheri

Strategies for delivering nucleic acids into damaged and diseased tissues have been divided into two major areas: viral and non-viral gene therapy. In this mini-review article we discuss the application of gene therapy for the treatment of osteoarthritis (OA), one of the most common forms of arthritis. We focus primarily on non-viral gene therapy and cell therapy. We briefly discuss the advantages and disadvantages of viral and non-viral gene therapy and review the nucleic acid transfer systems that have been used for gene delivery into articular chondrocytes in cartilage from the synovial joint. Although viral gene delivery has been more popular due to its reported efficiency, significant effort has gone into enhancing the transfection efficiency of non-viral delivery, making non-viral approaches promising tools for further application in basic, translational and clinical studies on OA. Non-viral gene delivery technologies have the potential to transform the future development of disease-modifying therapeutics for OA and related osteoarticular disorders. However, further research is needed to optimize transfection efficiency, longevity and duration of gene expression.


2005 ◽  
Vol 4 (6) ◽  
pp. 615-625 ◽  
Author(s):  
Sushma Kommareddy ◽  
Sandip B. Tiwari ◽  
Mansoor M. Amiji

Significant advances in the understanding of the genetic abnormalities that lead to the development, progression, and metastasis of neoplastic diseases has raised the promise of gene therapy as an approach to medical intervention. Most of the clinical protocols that have been approved in the United States for gene therapy have used the viral vectors because of the high efficiency of gene transfer. Conventional means of gene delivery using viral vectors, however, has undesirable side effects such as insertion of mutational viral gene into the host genome and development of replication competent viruses. Among non-viral gene delivery methods, polymeric nanoparticles are increasingly becoming popular as vectors of choice. The major limitation of these nanoparticles is poor transfection efficiency at the target site after systemic administration due to uptake by the cells of reticuloendothelial system (RES). In order to reduce the uptake by the cells of the RES and improve blood circulation time, these nanoparticles are coated with hydrophilic polymers such as poly(ethylene glycol) (PEG). This article reviews the use of such hydrophilic polymers employed for improving the circulation time of the nanocarriers. The mechanism of polymer coating and factors affecting the circulation time of these nanocarriers will be discussed. In addition to the long circulating property, modifications to improve the target specificity of the particles and the limitations of steric protection will be analyzed.


2020 ◽  
Author(s):  
Kai Wang ◽  
Fusheng Shang ◽  
Dagui Chen ◽  
Jianpeng Jiao ◽  
Tieliu Cao ◽  
...  

Abstract The development of highly efficient non-viral gene vector systems has very important application value in the field of cancer therapy. The high protein content of proteolipids allows for high biocompatibility, low immunogenicity, and surface modification of proteins to confer more targeted drug/gene function. For the first time, this study selected transferrin, which has hepatocellular carcinoma cell targeting function, with a liposome backbone material to construct transferrin liposome (Tf-PL), and load acetylcholinesterase (AChE) therapeutic gene for in vitro and in vivo functions evaluation. The results showed that the Tf-PL transfection efficiency was higher than that of commercial Lipo 2000, low cytotoxicity and targeted ability to liver cancer SMMC-7721 cells. After tail vein injection, Tf-PL/AChE can effectively target to liver cancer, significantly inhibiting the growth of liver cancer xenografts in nude mice, prolonging the survival time of tumor-bearing nude mice, and also does not cause significant systemic toxicities. Our study provides a strategy for proteolipids targeting the transferrin receptor to carry therapeutic gene therapy for tumors. This method has strong tumor affinity and can provide an effective vector selection for precise tumor therapy.


2018 ◽  
Author(s):  
Barbara L. Waszczak ◽  
Nathan McDannold ◽  
Mark J. Cooper

We will investigate whether focused ultrasound (FUS) can increase delivery to the brain of a non-viral gene vector given by the intranasal route of administration. Aim 1 will examine different FUS treatment conditions to determine if FUS can increase total plasmid DNA nanoparticle (NP) delivery and transgene expression in the sonicated regions, the rat substantia nigra and striatum, two brain areas involved in Parkinson's Disease (PD). Aim 2 will test whether FUS improves tissue penetration and alters cellular transfection patterns in the sonicated regions following intranasal doses of DNA NPs. If successful, FUS may enable agents with poor capabilities of crossing the blood-brain barrier (BBB), e.g. neurotrophic factors, viral and non-viral vectors encoding them, to become disease-altering therapies by a non-invasive route of administration.


Sign in / Sign up

Export Citation Format

Share Document