Polymerization induced self-assembly: an opportunity toward the self-assembly of polysaccharide-containing copolymers into high-order morphologies

2019 ◽  
Vol 10 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Jean-Luc Six ◽  
Khalid Ferji

Self-assembly of polysaccharide-containing amphiphilic copolymers: polymerization induced self-assembly versus traditional techniques.

2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


2020 ◽  
Vol 11 (29) ◽  
pp. 4729-4740 ◽  
Author(s):  
Djallal Ikkene ◽  
Ana Andreea Arteni ◽  
Malika Ouldali ◽  
Jean-Luc Six ◽  
Khalid Ferji

The self-assembly methods and the temperature have a considerable impact on the morphology of the resulting nanoobjects in the case of amphiphilic glycopolymers.


Langmuir ◽  
2008 ◽  
Vol 24 (15) ◽  
pp. 8272-8279 ◽  
Author(s):  
F. Bougard ◽  
C. Giacomelli ◽  
L. Mespouille ◽  
R. Borsali ◽  
Ph. Dubois ◽  
...  

2014 ◽  
Vol 5 (13) ◽  
pp. 4069-4075 ◽  
Author(s):  
Xiaoshan Fan ◽  
Zhuo Wang ◽  
Du Yuan ◽  
Yang Sun ◽  
Zibiao Li ◽  
...  

Tailoring the self-assembly of linear-dendritic-like amphiphilic copolymers via stereocomplexation.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1357
Author(s):  
Michel Nguyen ◽  
Khalid Ferji ◽  
Sébastien Lecommandoux ◽  
Colin Bonduelle

Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of γ-Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and γ-Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.


2017 ◽  
Vol 19 (33) ◽  
pp. 21938-21945 ◽  
Author(s):  
Dan Mu ◽  
Jian-Quan Li ◽  
Sheng-Yu Feng

The self-assembly of a copolymer thin film, whose molecular structure is composed of one hydrophobic branch (denoted in green) and two hydrophilic branches (denoted in red), gives (a) cylindrical structure, (b) micellar structure, and (c) lamellar structure.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50543-50552 ◽  
Author(s):  
Weiwei Zhang ◽  
Delong Zhang ◽  
Xiaoshan Fan ◽  
Guangyue Bai ◽  
Yuqin Jiang ◽  
...  

Novel dumbbell-shaped amphiphilic copolymers based on P188 and PLA were synthesized by click chemistry and ring opening polymerization. The self-assembly behavior of the stereocomplexes and the DOX release profile from the aggregates were studied.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Sign in / Sign up

Export Citation Format

Share Document