scholarly journals Energy generation through bioelectrochemical degradation of pentachlorophenol in microbial fuel cell

RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20726-20736 ◽  
Author(s):  
Nishat Khan ◽  
M. Danish Khan ◽  
Abdul-Sattar Nizami ◽  
Mohammad Rehan ◽  
Azfar Shaida ◽  
...  

Bio-electrochemical degradation of pentachlorophenol was carried out in single as well as dual chambered microbial fuel cell (MFC) with simultaneous production of electricity.

2021 ◽  
Vol 411 ◽  
pp. 67-78
Author(s):  
Ivy Ai Wei Tan ◽  
J.R. Selvanathan ◽  
M.O. Abdullah ◽  
N. Abdul Wahab ◽  
D. Kanakaraju

Palm oil mill effluent (POME) discharged without treatment into watercourses can pollute the water source. Microbial fuel cell (MFC) has gained high attention as a green technology of converting organic wastewater into bio-energy. As an approach to overcome the limitations of the existing POME treatment methods, air-cathode MFC-Adsorption system is introduced as an innovative technology to treat POME and generate bio-electricity simultaneously. However, the use of conventional MFC with proton exchange membrane in large scale applications is restricted by the high cost and low power generation. Addition of mediator in MFC is essential in order to increase the electron transfer efficiency, hence enhancing the system performance. This study therefore aims to investigate the effect of different type of mediators i.e. congo red (CR), crystal violet (CV) and methylene blue (MB) on the performance of an affordable air-cathode MFC-Adsorption system made from earthen pot with POME as the substrate. The addition of different mediators altered the pH of the MFC-Adsorption system, in which more alkaline system showed better performance. The voltage generated in the system with CR, CV and MB mediator was 120.58 mV, 168.63 mV and 189.25 mV whereas the current generated was 2.41 mA, 3.37 mA and 3.79 mA, respectively. The power density of 290.79 mW/m3, 568.72 mW/m3 and 716.31 mW/m3 was produced in the MFC-Adsorption system with CR, CV and MB mediator, respectively. The highest POME treatment efficiency was achieved in MFC-Adsorption system with MB mediator, which resulted in biochemical oxygen demand, chemical oxygen demand, total suspended solids, turbidity and ammoniacal nitrogen removal of 75.3%, 84.8%, 91.5%, 86.1% and 23.31%, respectively. Overall, the air-cathode MFC-Adsorption system with addition of MB mediator was feasible for POME treatment and simultaneous bio-energy generation.


2016 ◽  
Vol 13 (9) ◽  
pp. 2209-2218 ◽  
Author(s):  
J. A. Adeniran ◽  
R. Huberts ◽  
J. J. De-Koker ◽  
O. A. Arotiba ◽  
O. F. Olorundare ◽  
...  

2009 ◽  
Vol 190 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Vanita Roshan Nimje ◽  
Chien-Yen Chen ◽  
Chien-Cheng Chen ◽  
Jiin-Shuh Jean ◽  
A. Satyanarayana Reddy ◽  
...  

2021 ◽  
Author(s):  
Akansha Shrivastava ◽  
Mamta Pal ◽  
Rakesh Kumar Sharma

Abstract Production of bioethanol and bioelectricity is a promising approach through microbial electrochemical technology. Sugars are metabolized by yeast to produces ethanol, CO2 and energy. Surplus electrons produced during the fermentation can be transferred through the circuit to generate electricity in a Microbial fuel cell (MFC). In the present study, a membrane less single chambered microbial fuel cell was developed for simultaneous production of bioethanol and bioelectricity. Pichia fermentans along with a well-known ethanol producing yeast Saccharomyces cerevisiae was allowed to ferment glucose. S. cerevisiae demonstrated maximum open circuit voltage (OCV) 0.287 ± 0.009 V and power density 4.473 mW m− 2 on 15th day, with a maximum ethanol yield of 5.6% (v/v) on 12th day. P. fermentans demonstrated a maximum OCV of 0.318 ± 0.0039 V and power density of 8.299 mW m− 2 on 15th day with ethanol yield of 4.7 % (v/v) on 12th day. Coulombic efficiency (CE) increased gradually from 0.002–0.471 % and 0.012–0.089 % in the case of S. cerevisiae and P. fermentans, respectively, during 15 days of experiment. Thus, the result indicated that Single chambered fuel cell can be explored for its potential applications for ethanol production along with clean energy generation.


2018 ◽  
Vol 37 (4) ◽  
pp. 1076
Author(s):  
S.M. Lawan ◽  
I Abba ◽  
B.D. Bala ◽  
A.Y. Abdullahi ◽  
A Aminu

2020 ◽  
Vol 45 (9) ◽  
pp. 7719-7724
Author(s):  
Sumisha Anappara ◽  
Anju Kanirudhan ◽  
Srinivas Prabakar ◽  
Haribabu Krishnan

Sign in / Sign up

Export Citation Format

Share Document