scholarly journals Synthesis, supramolecular organization and thermotropic phase behaviour of N-acyltris(hydroxymethyl)aminomethane

RSC Advances ◽  
2018 ◽  
Vol 8 (57) ◽  
pp. 32823-32831 ◽  
Author(s):  
Sengan Megarajan ◽  
Siva Bala Subramaniyan ◽  
Sureshan Muthuswamy ◽  
Savarimuthu Philip Anthony ◽  
Jothi Arunachalam ◽  
...  

Self assembly of N-acyltris(hydroxymethyl)aminomethane into interdigitized vesicles.

2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


Soft Matter ◽  
2013 ◽  
Vol 9 (15) ◽  
pp. 4003 ◽  
Author(s):  
Hansel Comas-Rojas ◽  
Carlos Enríquez-Victorero ◽  
Stephen J. Roser ◽  
Karen J. Edler ◽  
Aurora Pérez-Gramatges

2020 ◽  
pp. 1-14 ◽  
Author(s):  
Shuiyang Liu ◽  
Guiyang Yan ◽  
Jiwei Wang ◽  
Jingda Zhou ◽  
Lele Bie ◽  
...  

2014 ◽  
Vol 895 ◽  
pp. 111-115 ◽  
Author(s):  
Hairul A.A. Hamid ◽  
Rauzah Hashim ◽  
John M. Seddon ◽  
Nicholas J. Brooks

The phase behaviour and self-assembly structural parameters of a pair of monosaccharide and disaccharide Guerbet branched-chain β-D-glycosides, namely 2-octyldodecyl β-D-glucoside (β-Glc-C12C8) and 2-octyldodecyl β-D-maltoside (β-Mal-C12C8), have been studied by means of optical polarizing microscopy (OPM) and small-angle X-ray diffraction at room temperature (25°C). These compounds are sugar-based glycolipid surfactants having a total chain length of C20, and differ based on the increasing number of hydroxyl groups of the sugar headgroup (glucose and maltose). The repeat spacings obtained by X-ray diffraction as a function of water content have been used to determine the limiting hydration for the two glycosides. At room temperature, β-Glc-C12C8 and β-Mal-C12C8 have limiting hydrations of 22 wt% and 25 wt%, corresponding to 8 10 and 10 12 water molecules per glycoside, respectively. At all water contents between 5 and 29 wt % water, these compounds adopt inverse hexagonal (HII) or fluid lamellar (Lα) phases. The structural parameters of these phases have been determined from the diffraction data, from the X-ray repeat spacings, densities and concentration of the glycosides.


2019 ◽  
Vol 10 (6) ◽  
pp. 751-765 ◽  
Author(s):  
Alyssa W. May ◽  
Zhangxing Shi ◽  
Dilanji B. Wijayasekara ◽  
Douglas L. Gin ◽  
Travis S. Bailey

A series of ATRP-synthesized poly(IL) diblock copolymers exhibit morphological phase behavior with shifted phase boundaries and alkyl substituent dependent segregation.


2016 ◽  
Vol 7 (13) ◽  
pp. 2410-2418 ◽  
Author(s):  
Dongsook Chang ◽  
Bradley D. Olsen

Bioconjugates of a red fluorescent protein mCherry and a zwitterionic polymer (PDMAPS) are self-assembled into nanostructured materials. The concentrated solution phase behaviour is studied to elucidate the effect of high charge density along the polymer backbone.


2018 ◽  
Vol 115 (36) ◽  
pp. 8895-8900 ◽  
Author(s):  
Madeleine Piot ◽  
Benjamin Abécassis ◽  
Dalil Brouri ◽  
Claire Troufflard ◽  
Anna Proust ◽  
...  

Discrete metallomacrocycles are attractive scaffolds for the formation of complex supramolecular architectures with emergent properties. We herein describe the formation of hierarchical nanostructures using preformed metallomacrocycles by coordination-driven self-assembly of a covalent organic–inorganic polyoxometalate (POM)-based hybrid. In this system, we take advantage of the presence of charged subunits (POM, metal linker, and counterions) within the metallomacrocycles, which drive their aggregation through intermolecular electrostatic interactions. We show that the solvent composition and the charge of the metal linker are key parameters that steer the supramolecular organization. Different types of hierarchical self-assemblies, zero-dimensional (0D) dense nanoparticles, and 1D worm-like nanoobjects, can be selectively formed owing to different aggregation modes of the metallomacrocycles. Finally, we report that the worm-like structures drastically enhance the solubility in water of a pyrene derivative and can act as molecular carriers.


Sign in / Sign up

Export Citation Format

Share Document