scholarly journals Plasmonic nanomaterial structuring for SERS enhancement

RSC Advances ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 4982-4992 ◽  
Author(s):  
Agnes Purwidyantri ◽  
Chih-Hsien Hsu ◽  
Chia-Ming Yang ◽  
Briliant Adhi Prabowo ◽  
Ya-Chung Tian ◽  
...  

Au island over nanospheres (AuIoN) structures featuring a three-dimensional (3D) nanostructure on a two-dimensional (2D) array of nanospheres with different adhesion layers were fabricated as surface-enhanced Raman scattering (SERS) substrates.

2014 ◽  
Vol 979 ◽  
pp. 255-258
Author(s):  
Attawit Supati ◽  
Puenisara Limnonthakul ◽  
Saksorn Limwichean ◽  
Woraphan Chaisriratanakul ◽  
Pitak Eiamchai ◽  
...  

Three-dimensional (3D)-hybrid surface-enhanced Raman scattering (SERS) substrates have been achieved via simultaneous assembled silver nanoparticles (AgNPs) onto the anodic aluminum oxide (AAO) templates. The AAO templates were prepared from the UHV aluminum foil in 0.3 M oxalic acid using the two-step anodization process at 0°C. The effect of applied voltage ranging from 30 to 50 V on the porous diameter and the inter-porous distance of the AAO templates was investigated and observed with filed-emission scanning electron microscope (FE-SEM). The results showed that the porous distance and the inter-porous distance were linearly increased with the increase in the voltage potentials. To investigate the pore-size effect on the SERS activities, the AgNPs were deposited on the AAO nanoporous templates. The SERS activities of these nanostructures were demonstrated with the methylene blue (MB) as the probing molecules.


2016 ◽  
Vol 71 (5) ◽  
pp. 879-887 ◽  
Author(s):  
Murugesan Balamurugan ◽  
Jyisy Yang

In this work, a simple method via decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofibers (PCNFs) was proposed to prepare highly sensitive three-dimensional (3D) substrates for surface-enhanced Raman scattering (SERS) measurements. The method proposed in this work gave a high sensitive Ag@PCNFs substrate, which resulted from a successful production of high surface area of PCNFs with a high efficiency in the decoration of AgNPs. To produce PCNFs suitable for SERS application, parameters in fabrication of PCNFs were systematically examined and correlated with their corresponding scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, the solvent to form PC solution, the applied voltage, and the rotating speed of a drum collector. Using the optimized condition, the bead-free PCNFs with a diameter in the range of 200–400 nm were successfully produced. To increase the efficiency in decoration of AgNPs, the surface properties of PNCFs were altered with an organic solvent, which was selected experimentally with guidance of Hildebrand solubility parameter. Results indicated that methanol was the most suitable solvent to effectively decorate AgNPs on PCNFs. By probing with para-hydroxythiophenol (pHTP), prepared SERS substrates of Ag@PCNFs provided an enhancement factor to the order of 7, which is at least an order of magnitude larger than the reported values in the literature for SERS substrates prepared with the electrospinning technique.


2021 ◽  
Vol 14 (1) ◽  
pp. 228
Author(s):  
Xiaoqiao Huang ◽  
Li Cai ◽  
Tingting Fan ◽  
Kexi Sun ◽  
Le Yao ◽  
...  

Here we report a simple fabrication method for large-scale hybrid surface-enhanced Raman scattering (SERS) active substrates composed of Au-nanoparticle-decorated three-dimensional (3D) Cu(OH)2@HKUST-1 (Cu3(btc)2, H3btc = 1,3,5-benzenetricarboxylic acid) nanorod arrays on a woven Cu mesh (Cu mesh/Cu(OH)2@HKUST-1@Au). Cu(OH)2 nanorods were first obtained from a simple in situ chemical engraving Cu mesh and then utilized as self-sacrificing templates to achieve HKUST-1 nanocube-assembled nanorods; finally, Au nanoparticles (Au NPs) were sputtered onto the Cu(OH)2@HKUST-1 nanorods. Due to the large surface area, the three-dimensional Cu mesh/Cu(OH)2@HKUST-1 nanorods could load high-density Au NPs and capture target detection molecules, which is beneficial to the formation of a strong electromagnetic field coupling between Au NPs, and provides abundant “hot spots” for a sensitive and uniform SERS effect. Using the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays as the SERS substrate, 10−9 M Rhodamine 6G and 10−8 M 4-aminothiophenolcan were identified. To verify their practical application, the fabricated arrays were employed as SERS substrates for the detection of thiram, and 10−8 M thiram could be recognized. The hybrid SERS substrates show potential applications in the field of environmental pollutant detection and this is of great significance to the sustainable development of the environment.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 520 ◽  
Author(s):  
Jia Zhu ◽  
Guanzhou Lin ◽  
Meizhang Wu ◽  
Zhuojie Chen ◽  
Peimin Lu ◽  
...  

Technology transfer from laboratory into practical application needs to meet the demands of economic viability and operational simplicity. This paper reports a simple and convenient strategy to fabricate large-scale and ultrasensitive surface-enhanced Raman scattering (SERS) substrates. In this strategy, no toxic chemicals or sophisticated instruments are required to fabricate the SERS substrates. On one hand, Ag nanoparticles (NPs) with relatively uniform size were synthesized using the modified Tollens method, which employs an ultra-low concentration of Ag+ and excessive amounts of glucose as a reducing agent. On the other hand, when a drop of the colloidal Ag NPs dries on a horizontal solid surface, the droplet becomes ropy, turns into a layered structure under gravity, and hardens. During evaporation, capillary flow was burdened by viscidity resistance from the ropy glucose solution. Thus, the coffee-ring effect is eliminated, leading to a uniform deposition of Ag NPs. With this method, flat Ag NPs-based SERS active films were formed in array-well plates defined by hole-shaped polydimethylsiloxane (PDMS) structures bonded on glass substrates, which were made for convenient detection. The strong SERS activity of these substrates allowed us to reach detection limits down to 10−14 M of Rhodamine 6 G and 10−10 M of thiram (pesticide).


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Li Yuan ◽  
Jinghuai Fang ◽  
Yonglong Jin ◽  
Chaonan Wang ◽  
Tian Xu

We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition,Staphylococcus aureuscells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.


Sign in / Sign up

Export Citation Format

Share Document