Tracking mobile active sites and intermediates in NH3-SCR over zeolite catalysts by impedance-based in situ spectroscopy

2019 ◽  
Vol 4 (6) ◽  
pp. 986-994 ◽  
Author(s):  
Peirong Chen ◽  
Valentina Rizzotto ◽  
Kunpeng Xie ◽  
Ulrich Simon

Impedance-based in situ spectroscopy allows direct tracking of the mobile active sites and reaction intermediates in NH3-SCR over zeolite catalysts.

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 496 ◽  
Author(s):  
Shaoxin Wang ◽  
Ziwei Chen ◽  
Beini He ◽  
Zheng Yan ◽  
Hao Wang ◽  
...  

A series of CeOx catalysts supported by commercial porous cordierite ceramics (CPCC) and synthesized porous cordierite ceramics (SPCC) from fly ash were prepared for selective catalytic reduction of NOx with ammonia (NH3-SCR). A greater than 90% NOx conversion rate was achieved by the SPCC supported catalyst at 250–300 °C when the concentration of loading precursor was 0.6 mol/L (denoted as 0.6Ce/SPCC), which is more advantageous than the CPCC supported ones. The EDS mapping results reveal the existence of evenly distributed impurities on the surface of SPCC, which hence might be able to provide more attachment sites for CeOx particles. Further measurements with temperature programmed reduction by hydrogen (H2-TPR) demonstrate more reducible species on the surface of 0.6Ce/SPCC, thus giving rise to better NH3-SCR performance at a low-temperature range. The X-ray photoelectron spectroscopy (XPS) analyses reveal that the Ce atom ratio is higher in 0.6Ce/SPCC, indicating that a higher concentration of catalytic active sites could be found on the surface of 0.6Ce/SPCC. The in situ diffused reflectance infrared fourier transform spectroscopy (DRIFTS) results indicate that the SCR reactions over 0.6Ce/SPCC follow both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. Hence, the SPCC might be a promising candidate to provide support for NH3-SCR catalysts, which also provide a valuable approach to recycling the fly ash.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


Author(s):  
Guangpeng Yang ◽  
Jingyu Ran ◽  
Xuesen Du ◽  
Xiangmin Wang ◽  
Zhilin Ran ◽  
...  

Cu-SAPO-34 zeolite catalysts show excellent NH3-SCR performance at low temperature, which is due to the catalytic capacity of copper species.


2021 ◽  
Author(s):  
Yulong Shan ◽  
Guangzhi He ◽  
Jinpeng Du ◽  
Yu Sun ◽  
Zhongqi Liu ◽  
...  

Abstract Commercial Cu-exchanged small-pore SSZ-13 (Cu-SSZ-13) zeolite catalysts are highly active for the selective catalytic reduction (SCR) of NOx with NH3, but distinct from other catalyst systems, their activity is unexpectedly inhibited in the presence of NO2. Here, we combined kinetic experiments, in-situ/operando X-ray absorption spectroscopy, and density functional theory (DFT) calculations to obtain direct evidence that under reaction conditions, strong oxidation by NO2 forces Cu ions to exist mainly as fixed framework Cu2+ species (fw-Cu2+), which impede the formation of dynamic binuclear Cu+ species that serve as the main active sites for the standard SCR (SSCR) reaction. As a result, the SSCR reaction is significantly inhibited by NO2 in the zeolite system, and the NO2-involved SCR reaction occurs with an energy barrier higher than that of the SSCR reaction on dynamic binuclear sites. Moreover, the NO2-involved SCR reaction tends to occur at the Brønsted acid sites (BAS) rather than the fw-Cu2+ sites. This work clearly explains the strikingly distinctive selective catalytic behavior in the zeolite system.


ACS Catalysis ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 1693-1705 ◽  
Author(s):  
Thanh Huyen Vuong ◽  
Jörg Radnik ◽  
Jabor Rabeah ◽  
Ursula Bentrup ◽  
Matthias Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document