scholarly journals A spheres-in-tube carbonaceous nanostructure for high-capacity and high-rate lithium–sulfur batteries

2018 ◽  
Vol 6 (30) ◽  
pp. 14885-14893 ◽  
Author(s):  
Yuanhang Ge ◽  
Ze Chen ◽  
Sunjie Ye ◽  
Zhifeng Zhu ◽  
Yingfeng Tu ◽  
...  

A spheres-in-tube carbonaceous nanostructure has been prepared as an effective sulfur host, exhibiting large reversible capacity and good cycling stability.

2020 ◽  
Vol 7 (20) ◽  
pp. 3969-3979
Author(s):  
Rui Luo ◽  
Baojuan Xi ◽  
Ruchao Wei ◽  
Weihua Chen ◽  
Xiaojian Ma ◽  
...  

Nitrogen doped graphitic ladder-structured carbon nanotubes loaded with cobalt nanoparticles were synthesized and shown to be a suitable sulfur host for lithium–sulfur batteries, which exhibits good cycling stability and excellent rate capability.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


2021 ◽  
pp. 2143004
Author(s):  
Yuman Yang ◽  
Yi Zhang ◽  
Meng Yang ◽  
Xiangyu Zhao

The dissolution and shuttle behavior of lithium polysulfides has been considered to be one of the serious problems restricting the development of lithium−sulfur (Li–S) batteries. Polar compounds are regarded as promising sulfur host materials due to their strong chemical adsorption to lithium polysulfides. Herein, polar TiO[Formula: see text] with porous structure is employed as the sulfur host, which has a high specific surface area and provides nanoconfined space for storage and adsorption of sulfur species. As a result, the as-prepared S@TiO[Formula: see text] cathode exhibits significantly enhanced reversible capacity, cycling stability, and reaction kinetics compared to those of the as-prepared S@TiO2 cathode.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.


Nanoscale ◽  
2019 ◽  
Vol 11 (44) ◽  
pp. 21532-21541 ◽  
Author(s):  
Huaiyue Zhang ◽  
Hongtao Cui ◽  
Jing Li ◽  
Yuanyuan Liu ◽  
Yanzhao Yang ◽  
...  

A hollow Fe3C@N–C with frogspawn-like architecture was successfully constructed as an efficient sulfur host for high-rate and long-life lithium–sulfur batteries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2015 ◽  
Vol 274 ◽  
pp. 471-476 ◽  
Author(s):  
Motohiro Nagao ◽  
Akitoshi Hayashi ◽  
Masahiro Tatsumisago ◽  
Takahiro Ichinose ◽  
Tomoatsu Ozaki ◽  
...  

2019 ◽  
Vol 11 (8) ◽  
pp. 1093-1099
Author(s):  
Jianghong Wu ◽  
Boyu Liu ◽  
Fujin Shen ◽  
Yang Chen ◽  
Deyi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document