Femtosecond laser-induced scratch ablation as an efficient new method to evaluate the self-healing behavior of supramolecular polymers

2019 ◽  
Vol 7 (5) ◽  
pp. 2148-2155 ◽  
Author(s):  
Marcus Abend ◽  
Clemens Kunz ◽  
Steffi Stumpf ◽  
Stephan Gräf ◽  
Stefan Zechel ◽  
...  

A supramolecular self-healing metallopolymer was ablated with a femtosecond laser to realize reproducible scratches. These are studied using 3D-profilometry in combination with scratch testing experiments. Healing efficiencies are determined..

2018 ◽  
Vol 39 (17) ◽  
pp. 1700742 ◽  
Author(s):  
Marcel Enke ◽  
Lukas Köps ◽  
Stefan Zechel ◽  
Johannes C. Brendel ◽  
Jürgen Vitz ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 2496-2504
Author(s):  
Josefine Meurer ◽  
Julian Hniopek ◽  
Johannes Ahner ◽  
Michael Schmitt ◽  
Jürgen Popp ◽  
...  

The self-healing behavior of two supramolecular polymers based on π–π-interactions featuring different polymer backbones is presented. For this purpose, these polymers were synthesized utilizing a polycondensation of a perylene tetracarboxylic dianhydride with polyether-based diamines and the resulting materials were investigated using various analytical techniques. Thus, the molecular structure of the polymers could be correlated with the ability for self-healing. Moreover, the mechanical behavior was studied using rheology. The activation of the supramolecular interactions results in a breaking of these noncovalent bonds, which was investigated using IR spectroscopy, leading to a sufficient increase in mobility and, finally, a healing of the mechanical damage. This scratch-healing behavior was also quantified in detail using an indenter.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075018
Author(s):  
Xi Wang ◽  
Hao Qiao ◽  
Ziwei Zhang ◽  
Shiying Tang ◽  
Shengjun Liu ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


Sign in / Sign up

Export Citation Format

Share Document