Ultrafast solid-state lithium ion conductor through alloying induced lattice softening of Li6PS5Cl

2018 ◽  
Vol 6 (39) ◽  
pp. 19231-19240 ◽  
Author(s):  
Minjie Xuan ◽  
Weidong Xiao ◽  
Hongjie Xu ◽  
Yonglong Shen ◽  
Zhenzhen Li ◽  
...  

A solid electrolyte with superb Li+ conductivity through tuning of the lattice chemistry in Li6PS5Cl. The ionic conductivity is enhanced through the combined effect of excess Li and substitution of S with Te.

Author(s):  
Seonggyu Cho ◽  
Shinho Kim ◽  
Wonho Kim ◽  
Seok Kim ◽  
Sungsook Ahn

Considering the safety issues of Li ion batteries, all-solid-state polymer electrolyte has been one of the promising solutions. In this point, achieving a Li ion conductivity in the solid state electrolytes comparable to liquid electrolytes (>1 mS/cm) is particularly challenging. Employment of polyethylene oxide (PEO) solid electrolyte has not been not enough in this point due to high crystallinity. In this study, hybrid solid electrolyte (HSE) systems are designed with Li1.3Al0.3Ti0.7(PO4)3(LATP), PEO and Lithium hexafluorophosphate (LiPF6) or Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Hybrid solid cathode (HSC) is also designed using LATP, PEO and lithium cobalt oxide (LiCoO2, LCO)—lithium manganese oxide (LiMn2O4, LMO). The designed HSE system displays 3.0 × 10−4 S/cm (55 ℃) and 1.8 × 10−3 S/cm (23 ℃) with an electrochemical stability as of 6.0 V without any separation layer introduction. Li metal (anode)/HSE/HSC cell in this study displays initial charge capacity as of 123.4/102.7 mAh/g (55 ℃) and 73/57 mAh/g (25 °C). To these systems, Succinonitrile (SN) has been incorporated as a plasticizer for practical secondary Li ion battery system development to enhance ionic conductivity. The incorporated SN effectively increases the ionic conductivity without any leakage and short-circuits even under broken cell condition. The developed system also overcomes the typical disadvantages of internal resistance induced by Ti ion reduction. In this study, optimized ionic conductivity and low internal resistance inside the Li ion battery cell have been obtained, which suggests a new possibility in the secondary Li ion battery development.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mengmeng Gao ◽  
Xiaolei Wu ◽  
Shuhong Yi ◽  
Shuwei Sun ◽  
Caiyan Yu ◽  
...  

Upgrading liquid electrolytes with all-solid-state electrolytes (ASEs) or quasi-solid-state electrolytes (QSEs) for solid-state batteries (SBs) have emerged not only to address the intrinsic disadvantages of traditional liquid lithium ion batteries,...


Nanoscale ◽  
2021 ◽  
Author(s):  
Erqing Zhao ◽  
Yudi Guo ◽  
Awei Zhang ◽  
Hongliang Wang ◽  
Guang-ri Xu

Polyethylene oxide (PEO) solid electrolyte is a promising candidate for all solid state lithium-ion batteries (ASSLIBs), but its low ionic conductivity and poor interfacial compatibility against lithium limit the rate...


2020 ◽  
Vol 8 (2) ◽  
pp. 706-713 ◽  
Author(s):  
Jiaying Bi ◽  
Daobin Mu ◽  
Borong Wu ◽  
Jiale Fu ◽  
Hao Yang ◽  
...  

An LLTO/PAN/SNE hybrid solid electrolyte membrane with high ionic conductivity and excellent compatibility with both LiFePO4 cathode and metallic lithium anode.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1889 ◽  
Author(s):  
Hui Wang ◽  
Xiaodong Cui ◽  
Cong Zhang ◽  
Huang Gao ◽  
Wei Du ◽  
...  

All solid-state lithium-ion batteries based on polymer electrolytes have higher safety and energy density, but the low conductivity of lithium ion restricts its application. This study proposes a new method to promote the ionic conductivity of polyethylene oxide (PEO)-based solid electrolytes. In this method, the PEO-based solid electrolyte was first prepared by casting, and then power ultrasound was exerted on the electrolyte by a sandwich structure to modify the electrolyte structure. Through analysis of the performance and microstructure of the electrolyte, it was found that the ultrasonic treatment increased the ionic conductivity by 78%, improved tensile strength and plastic deformation ability, but did not affect the thermal stability and the chemical composition. The ultrasonic vibration, exerting high energy to the solid electrolyte through high-frequency vibration, broke PEO grains and melted them with the frictional heat at boundary. Due to the slight melting and fast solidifying produced by the pulsed ultrasonic treatment, the crystallization was suppressed. The crystallinity was thus reduced by 6.2%, which increased the migration channels of lithium ions and reduced the tortuosity effect. Furthermore, the ultrasonic vibration compressed the electrolyte to produce plastic flow of the material, which made the electrolyte structure more compact. The density of ethylene oxide (EO) units thus increased in the amorphous phase, providing multiple electron-donor coordination sites for the Li+. The hopping distance of the ion between donors decreased, which also facilitated the migration. In addition, the mechanical performance of the electrolyte membrane improved. This study provides a reference for the improvement of polymer based all-solid-state batteries.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


Sign in / Sign up

Export Citation Format

Share Document