scholarly journals Promotion of Ionic Conductivity of PEO-Based Solid Electrolyte Using Ultrasonic Vibration

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1889 ◽  
Author(s):  
Hui Wang ◽  
Xiaodong Cui ◽  
Cong Zhang ◽  
Huang Gao ◽  
Wei Du ◽  
...  

All solid-state lithium-ion batteries based on polymer electrolytes have higher safety and energy density, but the low conductivity of lithium ion restricts its application. This study proposes a new method to promote the ionic conductivity of polyethylene oxide (PEO)-based solid electrolytes. In this method, the PEO-based solid electrolyte was first prepared by casting, and then power ultrasound was exerted on the electrolyte by a sandwich structure to modify the electrolyte structure. Through analysis of the performance and microstructure of the electrolyte, it was found that the ultrasonic treatment increased the ionic conductivity by 78%, improved tensile strength and plastic deformation ability, but did not affect the thermal stability and the chemical composition. The ultrasonic vibration, exerting high energy to the solid electrolyte through high-frequency vibration, broke PEO grains and melted them with the frictional heat at boundary. Due to the slight melting and fast solidifying produced by the pulsed ultrasonic treatment, the crystallization was suppressed. The crystallinity was thus reduced by 6.2%, which increased the migration channels of lithium ions and reduced the tortuosity effect. Furthermore, the ultrasonic vibration compressed the electrolyte to produce plastic flow of the material, which made the electrolyte structure more compact. The density of ethylene oxide (EO) units thus increased in the amorphous phase, providing multiple electron-donor coordination sites for the Li+. The hopping distance of the ion between donors decreased, which also facilitated the migration. In addition, the mechanical performance of the electrolyte membrane improved. This study provides a reference for the improvement of polymer based all-solid-state batteries.

Author(s):  
Seonggyu Cho ◽  
Shinho Kim ◽  
Wonho Kim ◽  
Seok Kim ◽  
Sungsook Ahn

Considering the safety issues of Li ion batteries, all-solid-state polymer electrolyte has been one of the promising solutions. In this point, achieving a Li ion conductivity in the solid state electrolytes comparable to liquid electrolytes (>1 mS/cm) is particularly challenging. Employment of polyethylene oxide (PEO) solid electrolyte has not been not enough in this point due to high crystallinity. In this study, hybrid solid electrolyte (HSE) systems are designed with Li1.3Al0.3Ti0.7(PO4)3(LATP), PEO and Lithium hexafluorophosphate (LiPF6) or Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Hybrid solid cathode (HSC) is also designed using LATP, PEO and lithium cobalt oxide (LiCoO2, LCO)—lithium manganese oxide (LiMn2O4, LMO). The designed HSE system displays 3.0 × 10−4 S/cm (55 ℃) and 1.8 × 10−3 S/cm (23 ℃) with an electrochemical stability as of 6.0 V without any separation layer introduction. Li metal (anode)/HSE/HSC cell in this study displays initial charge capacity as of 123.4/102.7 mAh/g (55 ℃) and 73/57 mAh/g (25 °C). To these systems, Succinonitrile (SN) has been incorporated as a plasticizer for practical secondary Li ion battery system development to enhance ionic conductivity. The incorporated SN effectively increases the ionic conductivity without any leakage and short-circuits even under broken cell condition. The developed system also overcomes the typical disadvantages of internal resistance induced by Ti ion reduction. In this study, optimized ionic conductivity and low internal resistance inside the Li ion battery cell have been obtained, which suggests a new possibility in the secondary Li ion battery development.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mengmeng Gao ◽  
Xiaolei Wu ◽  
Shuhong Yi ◽  
Shuwei Sun ◽  
Caiyan Yu ◽  
...  

Upgrading liquid electrolytes with all-solid-state electrolytes (ASEs) or quasi-solid-state electrolytes (QSEs) for solid-state batteries (SBs) have emerged not only to address the intrinsic disadvantages of traditional liquid lithium ion batteries,...


Nanoscale ◽  
2021 ◽  
Author(s):  
Erqing Zhao ◽  
Yudi Guo ◽  
Awei Zhang ◽  
Hongliang Wang ◽  
Guang-ri Xu

Polyethylene oxide (PEO) solid electrolyte is a promising candidate for all solid state lithium-ion batteries (ASSLIBs), but its low ionic conductivity and poor interfacial compatibility against lithium limit the rate...


2020 ◽  
Vol 8 (2) ◽  
pp. 706-713 ◽  
Author(s):  
Jiaying Bi ◽  
Daobin Mu ◽  
Borong Wu ◽  
Jiale Fu ◽  
Hao Yang ◽  
...  

An LLTO/PAN/SNE hybrid solid electrolyte membrane with high ionic conductivity and excellent compatibility with both LiFePO4 cathode and metallic lithium anode.


2018 ◽  
Vol 6 (39) ◽  
pp. 19231-19240 ◽  
Author(s):  
Minjie Xuan ◽  
Weidong Xiao ◽  
Hongjie Xu ◽  
Yonglong Shen ◽  
Zhenzhen Li ◽  
...  

A solid electrolyte with superb Li+ conductivity through tuning of the lattice chemistry in Li6PS5Cl. The ionic conductivity is enhanced through the combined effect of excess Li and substitution of S with Te.


2017 ◽  
Vol 5 (13) ◽  
pp. 6310-6317 ◽  
Author(s):  
Ruo-chen Xu ◽  
Xin-hui Xia ◽  
Shu-han Li ◽  
Sheng-zhao Zhang ◽  
Xiu-li Wang ◽  
...  

A lithium superionic conductor of Li7P2.9Mn0.1S10.7I0.3 as solid electrolyte was successfully prepared via high-energy milling, possessing high ionic conductivity and excellent electrochemical stability. The prepared all solid state LSBs shows a large capacity of 796 mA h g−1 with good cycling stability.


2021 ◽  
Author(s):  
Marm Dixit ◽  
Nitin Muralidharan ◽  
Anand Parejiya ◽  
Ruhul Amin ◽  
Rachid Essehli ◽  
...  

Solid-state battery (SSB) is the new avenue for achieving safe and high energy density energy storage in both conventional but also niche applications. Such batteries employ a solid electrolyte unlike the modern-day liquid electrolyte-based lithium-ion batteries and thus facilitate the use of high-capacity lithium metal anodes thereby achieving high energy densities. Despite this promise, practical realization and commercial adoption of solid-state batteries remain a challenge due to the underlying material and cell level issues that needs to be overcome. This chapter thus covers the specific challenges, design principles and performance improvement strategies pertaining to the cathode, solid electrolyte and anode used in solid state batteries. Perspectives and outlook on specific applications that can benefit from the successful implementation of solid-state battery systems are also discussed. Overall, this chapter highlights the potential of solid-state batteries for successful commercial deployment in next generation energy storage systems.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Amores ◽  
Hany El-Shinawi ◽  
Innes McClelland ◽  
Stephen R. Yeandel ◽  
Peter J. Baker ◽  
...  

AbstractSolid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Samuel Adjepong Danquah ◽  
Jacob Strimaitis ◽  
Clifford F. Denize ◽  
Sangram K. Pradhan ◽  
Messaoud Bahoura

All-solid-state batteries (ASSBs) are gaining traction in the arena of energy storage due to their promising results in producing high energy density and long cycle life coupled with their capability of being safe. The key challenges facing ASSBs are low conductivity and slow charge transfer kinetics at the interface between the electrode and the solid electrolyte. Garnet solid-state electrolyte has shown promising results in improving the ion conductivity but still suffers from poor capacity retention and rate performance due to the interfacial resistance between the electrodes. To improve the interfacial resistance, we prepared a composite consisting of Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) garnet material as the ceramic, polyethylene oxide (PEO) as the polymer, and lithium hexafluorophosphate (LiPF6) as the salt. These compounds are mixed in a stoichiometric ratio and developed into a very thin disc-shaped solid electrolyte. The LLCZN provides a lithium-ion transport path to enhance the lithium-ion conduction during charging and discharging cycles, while the LiPF6 contributes more lithium ions via the transport path. The PEO matrix in the composite material aids in bonding the compounds together and creating a large contact area, thereby reducing the issue of large interfacial resistance. FESEM images show the porous nature of the electrolyte which promotes the movement of lithium ions through the electrolyte. The fabricated LLCZN/PEO/LiPF6 solid-state electrolyte shows outstanding electrochemical stability that remains at 130 mAh g−1 up to 150 charging and discharging cycles at 0.05 mA cm−2 current. All the specific capacities were calculated based on the mass of the cathode material (LiCoO2). In addition, the coin cell retains 85% discharge capacity up to 150 cycles with a Coulombic efficiency of approximately 98% and energy efficiency of 90% during the entire cycling process.


Sign in / Sign up

Export Citation Format

Share Document