Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma

2018 ◽  
Vol 6 (36) ◽  
pp. 5823-5834 ◽  
Author(s):  
Qianyuan He ◽  
Xiaoxiao He ◽  
Bin Deng ◽  
Chen Shi ◽  
Leping Lin ◽  
...  

Schematic illustration of the synthesis of SILs and NIR fluorescence imaging guided SF, PDT and PTT theranostic nanoplatforms.

Vascular ◽  
2021 ◽  
pp. 170853812110328
Author(s):  
Pim Van den Hoven ◽  
Floris S Weller ◽  
Merel Van De Bent ◽  
Lauren N Goncalves ◽  
Melissa Ruig ◽  
...  

Objectives Current diagnostic modalities for patients with peripheral artery disease (PAD) mainly focus on the macrovascular level. For assessment of tissue perfusion, near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) seems promising. In this prospective cohort study, ICG NIR fluorescence imaging was performed pre- and post-revascularization to assess changes in foot perfusion. Methods ICG NIR fluorescence imaging was performed in 36 patients with PAD pre- and post-intervention. After intravenous bolus injection of 0.1 mg/kg ICG, the camera registered the NIR fluorescence intensity over time on the dorsum of the feet for 15 min using the Quest Spectrum Platform®. Time-intensity curves were plotted for three regions of interest (ROI): (1) the dorsum of the foot, (2) the forefoot, and (3) the hallux. Time-intensity curves were normalized for maximum fluorescence intensity. Extracted parameters were the maximum slope, area under the curve (AUC) for the ingress, and the AUC for the egress. The non-treated contralateral leg was used as a control group. Results Successful revascularization was performed in 32 patients. There was a significant increase for the maximum slope and AUC egress in all three ROIs. The most significant difference was seen for the maximum slope in ROI 3 (3.7%/s to 6.6%/s, p < 0.001). In the control group, no significant differences were seen for the maximum slope and AUC egress in all ROIs. Conclusions This study shows the potential of ICG NIR fluorescence imaging in assessing the effect of revascularization procedures on foot perfusion. Future studies should focus on the use of this technique in predicting favorable outcome of revascularization procedures.


2011 ◽  
Vol 19 (18) ◽  
pp. 17030 ◽  
Author(s):  
Teng Luo ◽  
Peng Huang ◽  
Guo Gao ◽  
Guangxia Shen ◽  
Shen Fu ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 944-949 ◽  
Author(s):  
Naoya Kawakita ◽  
Hiromitsu Takizawa ◽  
Toru Sawada ◽  
Daisuke Matsumoto ◽  
Mitsuhiro Tsuboi ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Toru Funayama ◽  
Masataka Sakane ◽  
Tetsuya Abe ◽  
Isao Hara ◽  
Eiichi Ozeki ◽  
...  

Marginal resection during resection of a spinal metastasis is frequently difficult because of the presence of important tissues such as the aorta, vena cava, and dura mater, including the spinal cord adjacent to the vertebral body. Thus, there is an urgent need for novel intraoperative imaging modalities with the ability to clearly identify bone metastasis. We have proposed a novel nanocarrier loaded with indocyanine green (ICG) (ICG-lactosome) with tumor selectivity attributable to its enhanced permeation and retention (EPR) effect. We studied its feasibility in intraoperative near-infrared (NIR) fluorescence diagnosis with ICG-lactosome for imaging spinal metastasis. A rat model of subcutaneous mammary tumor and a rat model of spinal metastasis of breast cancer were used. Fluorescence emitted by the subcutaneous tumors and the spinal metastasis were clearly detected for at least 24 h. Moreover, imaging of the dissected spine revealed clear fluorescence emitted by the metastatic lesion in the L6 vertebra while the normal bone lacked fluorescence. This study was the first report on NIR fluorescence imaging of spinal metastasis in vivo. NIR fluorescence imaging with ICG-lactosome could be an effective intraoperative imaging modality for detecting spinal metastasis.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1417
Author(s):  
Pim Van Den Hoven ◽  
Lauren N. Goncalves ◽  
Paulus H. A. Quax ◽  
Catharina S. P. Van Rijswijk ◽  
Jan Van Schaik ◽  
...  

In assessing the severity of lower extremity arterial disease (LEAD), physicians rely on clinical judgements supported by conventional measurements of macrovascular blood flow. However, current diagnostic techniques provide no information about regional tissue perfusion and are of limited value in patients with chronic limb-threatening ischemia (CLTI). Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has been used extensively in perfusion studies and is a possible modality for tissue perfusion measurement in patients with CLTI. In this prospective cohort study, ICG NIR fluorescence imaging was performed in patients with CLTI and control patients using the Quest Spectrum Platform® (Middenmeer, The Netherlands). The time–intensity curves were analyzed using the Quest Research Framework. Fourteen parameters were extracted. Successful ICG NIR fluorescence imaging was performed in 19 patients with CLTI and in 16 control patients. The time to maximum intensity (seconds) was lower for CLTI patients (90.5 vs. 143.3, p = 0.002). For the inflow parameters, the maximum slope, the normalized maximum slope and the ingress rate were all significantly higher in the CLTI group. The inflow parameters observed in patients with CLTI were superior to the control group. Possible explanations for the increased inflow include damage to the regulatory mechanisms of the microcirculation, arterial stiffness, and transcapillary leakage.


2018 ◽  
Vol 115 (17) ◽  
pp. 4465-4470 ◽  
Author(s):  
Jessica A. Carr ◽  
Daniel Franke ◽  
Justin R. Caram ◽  
Collin F. Perkinson ◽  
Mari Saif ◽  
...  

Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000–2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Masaki Kaibori ◽  
Kosuke Matsui ◽  
Morihiko Ishizaki ◽  
Hiroya Iida ◽  
Tatsuma Sakaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document