Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer's disease in APP/PS1 transgenic mice by inhibiting Zn2+-mediated amyloid protein aggregation and neurotoxicity

2019 ◽  
Vol 7 (12) ◽  
pp. 5197-5210 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Manli Zhong ◽  
Pu Zhao ◽  
Xiancheng Zhang ◽  
You Li ◽  
...  

PZn screen from phage display technique and PZn loaded nanoparticles inhibiting Aβ aggregation and neurotoxicity in vitro and in vivo.

2020 ◽  
Vol 8 (20) ◽  
pp. 5656-5665
Author(s):  
Yushuang Qin ◽  
Siyuan Cheng ◽  
Yesen Li ◽  
Sijuan Zou ◽  
Minglong Chen ◽  
...  

An in vivo and in vitro two-step phage display screening approach to identify Glypican-3 targeting peptides for the detection of hepatocellular carcinoma with low normal liver uptake.


2008 ◽  
Vol 295 (1) ◽  
pp. F300-F309 ◽  
Author(s):  
Yu-Jung Lee ◽  
Hyo-Jung Choi ◽  
Jung-Suk Lim ◽  
Ji-Hyun Earm ◽  
Byung-Heon Lee ◽  
...  

Aquaporin-2 (AQP2), the vasopressin-regulated water channel in collecting duct principal cells, plays a key role in the regulation of body water balance. We aimed to isolate high-affinity peptide ligands that bind to immunoisolated AQP2-expressing plasma membrane (PM) or intracellular vesicle (ICV) preparations from rat kidney by the in vitro phage display technique. Immunoblotting revealed that AQP2 was exclusively expressed in the immunoisolated AQP2 membrane fractions (PM and ICV), compared with the nonimmunoisolated or preimmune IgG pulldown rat kidney samples. Moreover, AQP1 or H+-ATPase (B1 subunit) expression was minimal in the immunoisolated AQP2 membrane fractions, indicating the specificity of AQP2 membrane isolation. A phage peptide library based on T7 415-1b phage vector displaying CX7C was constructed. After three rounds of biopanning, seven phage clones of high frequency were selected, which showed high affinity to the AQP2-containing PM or ICV fractions compared with a nonrecombinant T7 insertless phage clone. In contrast, these phage clones showed lower affinity to H+-ATPase-containing fractions. Fluorescein-conjugated peptide labeling was associated with intracellular compartment and PM of primary cultured inner medullary collecting duct cells, relative to absent or very weak labeling with fluorescein-conjugated control peptide. Library analyses demonstrated proteins that had motifs homologous to the peptide ligands, albeit with a high probability of a random match due to short peptide sequences. In summary, we applied the in vitro phage display technique to identify high-affinity peptide ligands to AQP2-expressing membranes. Library analyses identified proteins having homologous motifs, which need to be examined for involvement in AQP2 trafficking and regulation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6842
Author(s):  
Xiaoyu Zhang ◽  
Xiancheng Zhang ◽  
Manli Zhong ◽  
Pu Zhao ◽  
Chuang Guo ◽  
...  

Copper (Cu) has been implicated in the progression of Alzheimer’s disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.


2020 ◽  
Vol 22 (1) ◽  
pp. 314
Author(s):  
Maria D. Dmitrieva ◽  
Anna A. Voitova ◽  
Maya A. Dymova ◽  
Vladimir A. Richter ◽  
Elena V. Kuligina

Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.


2014 ◽  
Vol 116 (5) ◽  
pp. 1322-1333 ◽  
Author(s):  
R.A. Bernedo-Navarro ◽  
M.M. Miyachiro ◽  
M.J. da Silva ◽  
C.F. Reis ◽  
R.A. Conceição ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3211-3219 ◽  
Author(s):  
Shinichi Kitada ◽  
Christina L. Kress ◽  
Maryla Krajewska ◽  
Lee Jia ◽  
Maurizio Pellecchia ◽  
...  

Abstract Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2–expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 μM and 7.5 to 10 μM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2–transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.


2020 ◽  
Author(s):  
Guo-Biao Xu ◽  
Pei-Pei Guan ◽  
Pu Wang

Abstract Background: Prostaglandin (PG) A1 is a metabolic product of cyclooxygenase 2 (COX-2), which potentially involved in regulating the development and progression of Alzheimer’s disease (AD). As a cyclopentenone (cy) PG, PGA1 is characterized by the presence of a chemically reactive α, β-unsaturated carbonyl. Although PGA1 is potentially involved in regulating multiple biological processes via michael addition, its specific roles in AD remained unclear.Methods: The tauP301S transgenic (Tg) mice were employed as in vivo AD models and neuroblastoma (N) 2a cells as in vitro neuronal models. By intracerebroventricular injected (i.c.v) with PGA1, the binding proteins to PGA1 are analyzed by HPLC-MS-MS. In addition, western blots are used to determine the phosphorylation of tau in PGA1 treated Tg mice in the absence or presence of okadaic acid (OA), an inhibitor of protein phosphotase (PP) 2A. Combining a synthesis of pull down assay, immunoprecipitation, western blots and HPLC-MS-MS, PP2A scaffold subunit A alpha (PPP2R1A) was identified to be activated by directly binding on PGA1 in cysteine 377-dependent manner. Via inhibiting the hyperphosphorylation of tau, morris maze test was employed to determine the inhibitory effects of PGA1 on cognitive decline of tauP301S Tg mice.Results: By incubation with neuroblastoma (n)2a cells and pull down assay, mass spectra (MS) analysis revealed that PGA1 binds with more than 1000 proteins, among which contains the proteins of AD, especially tau protein. Moreover, short-term administration of PGA1 to tauP301S Tg mice significantly decreased the phosphorylation of tau at the sites of Thr181, Ser202 and Ser404 in a dose-dependent manner. To the reason, it’s caused by activating PPP2R1A in tauP301S Tg mice. More importantly, PGA1 has the ability to form michael adduct with PPP2R1A via its cysteine 377 motif, which is critical for the enzymatic activity of PP2A. By activating PP2A, long-term application of PGA1 to tauP301S Tg mice significantly reduced the phosphorylation of tau, which results in improving the cognitive decline of tauP301S Tg mice.Conclusion: Our data provided the first insights needed to decipher the mechanisms underlying the ameliorating effects of PGA1 on cognitive decline of tauP301S Tg mice via activating PP2A in a PPP2R1AC377-dependent Michael adducting mechanisms.


Sign in / Sign up

Export Citation Format

Share Document