michael adduct
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alessio Terenzi ◽  
Mery La Franca ◽  
Sushilla van Schoonhoven ◽  
Rostyslav Panchuk ◽  
Álvaro Martínez ◽  
...  

AbstractLandomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism.


Author(s):  
Dushyant V. Patel ◽  
Divya M. Teli ◽  
Ashish M. Kanhed ◽  
Nirav R. Patel ◽  
Bhavik S. Shah ◽  
...  

A novel coronavirus is the causative agent identified for the current COVID-19 outbreak. Globally, more than 43 million people have been infected by this virus. The total number of deaths has surpassed 1.6 million across 210 countries due to the current pandemic. Till date, there is no specific therapeutic agent available for its treatment. Mpro, a non-structural protein cleaves viral polyproteins into other non-structural proteins. Inhibition of Mpro could prevent the virus replication projecting it as a potential candidate for anti-COVID-19 drug development. The authors report herein 10 top-ranked curcumin derivatives as non-peptide covalent-binding Mpro inhibitors using systematic virtual screening approach. Detailed ligand-receptor interaction analysis conferred that the α,β-unsaturated carbonyl moiety of curcumin functions as a warhead to yield a Michael adduct with Cys145 of the catalytic dyad of Mpro. Collectively, these results have offered new high affinity molecules for the development of potential drugs for the treatment of COVID-19.


2021 ◽  
Author(s):  
Susanne Fischer ◽  
Simon Renner ◽  
Adrian Daniel Böse ◽  
Christian Slugovc

Herein, we study the activity of methoxysubstituted arylphosphines (4-methoxy-phenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP) in catalyzing oxa-Michael additions in comparison to commonly used triphenylphosphine (TPP). Acrylonitrile, acryl amide and divinyl sulfone are used as Michael acceptors and propargyl alcohol, allyl alcohol, n-propanol and i-propanol are assessed as Michael donors. In many cases, catalyst loadings of only 1 mol% in respect to the Michael acceptor are sufficient to provide full conversion towards the Michael adduct in 24 h at room temperature. Generally, TMTPP is the most active catalyst in all cases. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine – Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was evaluated and electron richest TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier type repeat units and consequently lower molar masses were obtained.


2021 ◽  
Author(s):  
Susanne Fischer ◽  
Simon Renner ◽  
Adrian Daniel Böse ◽  
Christian Slugovc

Herein, we study the activity of methoxysubstituted arylphosphines (4-methoxy-phenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP) in catalyzing oxa-Michael additions in comparison to commonly used triphenylphosphine (TPP). Acrylonitrile, acryl amide and divinyl sulfone are used as Michael acceptors and propargyl alcohol, allyl alcohol, n-propanol and i-propanol are assessed as Michael donors. In many cases, catalyst loadings of only 1 mol% in respect to the Michael acceptor are sufficient to provide full conversion towards the Michael adduct in 24 h at room temperature. Generally, TMTPP is the most active catalyst in all cases. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine – Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was evaluated and electron richest TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier type repeat units and consequently lower molar masses were obtained.


2020 ◽  
Vol 295 (52) ◽  
pp. 18355-18366
Author(s):  
Mara Carreño ◽  
Mariana Bresque ◽  
Matías R. Machado ◽  
Leonardo Santos ◽  
Rosario Durán ◽  
...  

Sirtuin 6, SIRT6, is critical for both glucose and lipid homeostasis and is involved in maintaining genomic stability under conditions of oxidative DNA damage such as those observed in age-related diseases. There is an intense search for modulators of SIRT6 activity, however, not many specific activators have been reported. Long acyl-chain fatty acids have been shown to increase the weak in vitro deacetylase activity of SIRT6 but this effect is modest at best. Herein we report that electrophilic nitro-fatty acids (nitro-oleic acid and nitro-conjugated linoleic acid) potently activate SIRT6. Binding of the nitro-fatty acid to the hydrophobic crevice of the SIRT6 active site exerted a moderate activation (2-fold at 20 μm), similar to that previously reported for non-nitrated fatty acids. However, covalent Michael adduct formation with Cys-18, a residue present at the N terminus of SIRT6 but absent from other isoforms, induced a conformational change that resulted in a much stronger activation (40-fold at 20 μm). Molecular modeling of the resulting Michael adduct suggested stabilization of the co-substrate and acyl-binding loops as a possible additional mechanism of SIRT6 activation by the nitro-fatty acid. Importantly, treatment of cells with nitro-oleic acid promoted H3K9 deacetylation, whereas oleic acid had no effect. Altogether, our results show that nitrated fatty acids can be considered a valuable tool for specific SIRT6 activation, and that SIRT6 should be considered as a molecular target for in vivo actions of these anti-inflammatory nitro-lipids.


2020 ◽  
Author(s):  
Guo-Biao Xu ◽  
Pei-Pei Guan ◽  
Pu Wang

Abstract Background: Prostaglandin (PG) A1 is a metabolic product of cyclooxygenase 2 (COX-2), which potentially involved in regulating the development and progression of Alzheimer’s disease (AD). As a cyclopentenone (cy) PG, PGA1 is characterized by the presence of a chemically reactive α, β-unsaturated carbonyl. Although PGA1 is potentially involved in regulating multiple biological processes via michael addition, its specific roles in AD remained unclear.Methods: The tauP301S transgenic (Tg) mice were employed as in vivo AD models and neuroblastoma (N) 2a cells as in vitro neuronal models. By intracerebroventricular injected (i.c.v) with PGA1, the binding proteins to PGA1 are analyzed by HPLC-MS-MS. In addition, western blots are used to determine the phosphorylation of tau in PGA1 treated Tg mice in the absence or presence of okadaic acid (OA), an inhibitor of protein phosphotase (PP) 2A. Combining a synthesis of pull down assay, immunoprecipitation, western blots and HPLC-MS-MS, PP2A scaffold subunit A alpha (PPP2R1A) was identified to be activated by directly binding on PGA1 in cysteine 377-dependent manner. Via inhibiting the hyperphosphorylation of tau, morris maze test was employed to determine the inhibitory effects of PGA1 on cognitive decline of tauP301S Tg mice.Results: By incubation with neuroblastoma (n)2a cells and pull down assay, mass spectra (MS) analysis revealed that PGA1 binds with more than 1000 proteins, among which contains the proteins of AD, especially tau protein. Moreover, short-term administration of PGA1 to tauP301S Tg mice significantly decreased the phosphorylation of tau at the sites of Thr181, Ser202 and Ser404 in a dose-dependent manner. To the reason, it’s caused by activating PPP2R1A in tauP301S Tg mice. More importantly, PGA1 has the ability to form michael adduct with PPP2R1A via its cysteine 377 motif, which is critical for the enzymatic activity of PP2A. By activating PP2A, long-term application of PGA1 to tauP301S Tg mice significantly reduced the phosphorylation of tau, which results in improving the cognitive decline of tauP301S Tg mice.Conclusion: Our data provided the first insights needed to decipher the mechanisms underlying the ameliorating effects of PGA1 on cognitive decline of tauP301S Tg mice via activating PP2A in a PPP2R1AC377-dependent Michael adducting mechanisms.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 654
Author(s):  
Sebastián Llopis ◽  
Alexandra Velty ◽  
Urbano Díaz

Three families of organosiliceous materials with different structuration level, order, and textural properties (non-ordered, M41S, and SBA-15 type materials) were prepared incorporating in their structural framework chiral pyrrolidine units with variable content. Likewise, non-ordered mesoporous hybrid solids were obtained through a sol-gel process in a fluoride medium, while M41S and SBA-15 type materials were obtained through micellar routes in the presence of long-chain neutral surfactants or block copolymers. Thanks to appropriate characterization studies and catalytic tests for the Michael addition between butyraldehyde and β-nitrostyrene, we showed how the void shapes and sizes present in the structure of hybrid materials control the diffusion of reactants and products, as well as confine transition states and reactive intermediates. The best catalytic results, considering activity and enantioselectivity, were achieved in the presence of a non-ordered material, NOH-Pyr-5%, which exhibited the highest Brunauer-Emmett-Teller (BET) area, with a 96% yield and a 82% ee for the Michael adduct.


2018 ◽  
Vol 51 (23) ◽  
pp. 9961-9973 ◽  
Author(s):  
Suman Debnath ◽  
Rewati Raman Ujjwal ◽  
Umaprasana Ojha

Author(s):  
Péter Kisszékelyi ◽  
Sándor Nagy ◽  
Blanka Tóth ◽  
Bálint Zeller ◽  
László Hegedűs ◽  
...  

Two new pyridine-based asymmetric bifunctional organocatalysts containing one or two camphorsulfonamide units were synthesized. Asymmetric Michael addition of pentane-2,4-dione to β-nitrostyrene was catalyzed by these organocatalysts. During our experiments, influence of the solvent and temperature on the yield and enantioselectivity was studied. Using monocamphorsulfonamide derivative the S enantiomer of the corresponding Michael adduct was gained with moderate yield (up to 51 %) and low enantiomeric excess (up to 18 %). Organic solvent nanofiltration was successfully applied for the recovery of these organocatalysts. Furthermore, pyridine camphorsulfonamide was reduced to its piperidine derivative. Using piperidine monosulfonamide derivative racemic Michael adduct was obtained with excellent yield (up to 89 %). Beside its organocatalytic relevance, piperidine monosulfonamide derivative may also possess biological activity.


2018 ◽  
Vol 54 (5) ◽  
pp. 726-733 ◽  
Author(s):  
A. R. Tagirov ◽  
L. Kh. Fayzullina ◽  
D. R. Enikeeva ◽  
Yu. S. Galimova ◽  
Sh. M. Salikhov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document