scholarly journals Hypsochromic solvent shift of the charge separation band in ionic donor–acceptor Li+@C60⊂[10]CPP

2019 ◽  
Vol 55 (75) ◽  
pp. 11195-11198 ◽  
Author(s):  
Anton J. Stasyuk ◽  
Olga A. Stasyuk ◽  
Miquel Solà ◽  
Alexander A. Voityuk

Photoinduced electron transfer in CPP-based donor–acceptor complexes C60⊂[10]CPP and Li+@C60⊂[10]CPP was studied using DFT/TDDFT. Unusual blue shift of charge separated states for Li+@C60⊂[10]CPP complexes in the polar medium is predicted.

2008 ◽  
Vol 61 (4) ◽  
pp. 256 ◽  
Author(s):  
Andreas Gouloumis ◽  
G. M. Aminur Rahman ◽  
Julia Abel ◽  
Gema de la Torre ◽  
Purificación Vázquez ◽  
...  

A zinc(ii)-phthalocyanine-flavin dyad has been synthesized by Heck-type cross-coupling between a flavin that bears a p-iodophenyl group and a phthalocyanine functionalized with a vinyl moiety. Electrochemical experiments reveal that no significant interaction occurs at the ground state between the two electroactive subunits. However, the occurrence of a photoinduced electron transfer in this donor–acceptor conjugate is observed in transient absorption experiments. Charge-separation (i.e., 4.0 × 1011 s–1) and charge-recombination dynamics in benzonitrile (2.2 × 1010 s–1) reveal a remarkable stabilization of the radical ion pair in this solvent.


2015 ◽  
Vol 128 (2) ◽  
pp. 639-643 ◽  
Author(s):  
Tomohiro Higashino ◽  
Tomoki Yamada ◽  
Masanori Yamamoto ◽  
Akihiro Furube ◽  
Nikolai V. Tkachenko ◽  
...  

1994 ◽  
Vol 08 (03) ◽  
pp. 237-274 ◽  
Author(s):  
N. S. SARICIFTCI ◽  
A. J. HEBGER

The results of comprehensive studies of photoinduced electron transfer from semiconducting (conjugated) polymers to buckminsterfullerene are reviewed. Steady state and femtosecond time-resolved photoinduced absorption (photoexcitation spectroscopy), steady state and picosecond time-resolved photoluminescence, steady state and picosecond photoconductivity, and steady state light-induced electron spin resonance measurements are summarized as experimental evidence which demonstrates ultrafast, long lived photoinduced electron transfer. Comparative studies with different semiconducting polymers as donors demonstrate that in degenerate ground state polymers, soliton excitations form before the electron transfer can occur; thereby inhibiting charge transfer and charge separation. In non-degenerate ground state systems, photoinduced electron transfer occurs in less than 10−12 s , quenching the photoluminescence as well as the intersystem crossing into the triplet manifold. The importance of electron–phonon coupling and structural relaxation following photoexcitation in these quasi-one-dimensional semiconducting polymers is proposed as a principal contribution to the stabilization of the charge separated state. Utilizing thin films of the semiconducting polymer (donor) and buckminsterfullerene (acceptor) to form a heterojunction interface, we have fabricated bilayers which functioned as photodiodes and as photovoltaic cells. The results are discussed in terms of opportunities for solar energy conversion, for photodiode detector devices, and for a variety of other applications which use photoinduced charge separation.


2015 ◽  
Vol 17 (40) ◽  
pp. 26607-26620 ◽  
Author(s):  
Jaipal Kandhadi ◽  
Venkatesh Yeduru ◽  
Prakriti R. Bangal ◽  
Lingamallu Giribabu

Two different donor–acceptor systems based on corrole–ferrocene (Cor–Fc) and corrole–anthraquinone (Cor–AQ) have been designed and synthesized. Excited state properties of these dyads indicates intramolecular photoinduced electron transfer (PET) take place in these dyads and the electron-transfer rates (kET) was found to be ∼1011s−1. The charge separation (CS) and charge recombination (CR) are found to be identical.


2014 ◽  
Vol 18 (10n11) ◽  
pp. 982-990 ◽  
Author(s):  
Kei Ohkubo ◽  
Yuki Kawashima ◽  
Kentaro Mase ◽  
Hayato Sakai ◽  
Taku Hasobe ◽  
...  

An electron donor–acceptor supramolecular complex was formed between an anionic zinc chlorin carboxylate ( ZnCh -) and lithium-ion-encapsulated [60]fullerene ( Li +@ C 60) by an electrostatic interaction in benzonitrile ( PhCN ). Photoinduced electron transfer in the supramolecular complex of ZnCh -/ Li +@ C 60 resulted in the formation of the charge-separated state via electron transfer from the triplet excited state of ZnCh - to Li +@ C 60. We report herein photovoltaic cells using ZnCh -/ Li +@ C 60 nanoclusters, which are assembled on the optically transparent electrode (OTE) of nanostructured SnO 2 (OTE/ SnO 2). The photoelectrochemical behavior of the nanostructured SnO 2 film of supramolecular nanoclusters of ZnCh - and Li +@ C 60 denoted as OTE/ SnO 2/( ZnCh -/ Li +@ C 60)n is significantly higher than the single component films of ZnCh - or Li +@ C 60 clusters, denoted as OTE/ SnO 2/( ZnCh -)n or OTE/ SnO 2/( Li +@ C 60)n.


2007 ◽  
Vol 79 (6) ◽  
pp. 981-991 ◽  
Author(s):  
Shunichi Fukuzumi

As an alternative to conventional charge-separation functional molecular models based on multi-step long-range electron transfer (ET) within redox cascades, simple donor-acceptor dyads have been developed to attain a long-lived and high-energy charge-separated (CS) state without significant loss of excitation energy. In particular, a simple molecular electron donor-acceptor dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes), is capable of fast charge separation but extremely slow charge recombination. Such a simple molecular dyad has significant advantages with regard to synthetic feasibility, providing a variety of applications for photoinduced ET catalytic systems, including efficient photocatalytic systems for the solar energy conversion and construction of organic solar cells.


2020 ◽  
Vol 124 (7) ◽  
pp. 4010-4023 ◽  
Author(s):  
Ekaterina N. Ovchenkova ◽  
Natatiya G. Bichan ◽  
Arshak A. Tsaturyan ◽  
Nadezhda O. Kudryakova ◽  
Matvey S. Gruzdev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document