Hydride, chloride, and bromide show similar electronic effects in the Au9(PPh3)83+ nanocluster

2020 ◽  
Vol 56 (8) ◽  
pp. 1283-1285 ◽  
Author(s):  
Anthony Cirri ◽  
Hanna Morales Hernández ◽  
Christopher J. Johnson

Hydride and halide ligands in gold nanoclusters exhibit an unexpected similar electronic relationship, suggesting an underlying chemical linkage between them.

2021 ◽  
Author(s):  
Yavuz S. Ceylan ◽  
Rebecca Gieseking

Ligands can dramatically affect the electronic structure of gold nanoclusters (NCs) and provide a useful handle to tune the properties required for nanomaterials that have high performance for important functions like catalysis. Recently, questions have arisen about the nature of the interactions of hydride and halide ligands with Au NCs: hydride and halide ligands have similar effects on the absorption spectra of Au NCs, which suggested that the interactions of the two classes of ligands with the Au core may be similar. Here, we elucidate the interactions of halide and hydride ligands on phosphine-protected gold clusters via theoretical investigations. The computed absorption spectra using time-dependent density functional theory are in reasonable agreement with the experimental spectra, confirming that the computational methods are capturing the ligand-metal interactions accurately. Despite the similarities in the absorption spectra, the hydride and halide ligands have distinct geometric and electronic effects. The hydride ligand behaves as a metal dopant and contributes its two electrons to the number of superatomic electrons, while the halides act as electron-withdrawing ligands and do not change the number of superatomic electrons. Clarifying the binding modes of these ligands will aid in future efforts to use ligand derivatization as a powerful tool to rationally design Au NCs for use in functional materials.<br>


2021 ◽  
Author(s):  
Yavuz S. Ceylan ◽  
Rebecca Gieseking

Ligands can dramatically affect the electronic structure of gold nanoclusters (NCs) and provide a useful handle to tune the properties required for nanomaterials that have high performance for important functions like catalysis. Recently, questions have arisen about the nature of the interactions of hydride and halide ligands with Au NCs: hydride and halide ligands have similar effects on the absorption spectra of Au NCs, which suggested that the interactions of the two classes of ligands with the Au core may be similar. Here, we elucidate the interactions of halide and hydride ligands on phosphine-protected gold clusters via theoretical investigations. The computed absorption spectra using time-dependent density functional theory are in reasonable agreement with the experimental spectra, confirming that the computational methods are capturing the ligand-metal interactions accurately. Despite the similarities in the absorption spectra, the hydride and halide ligands have distinct geometric and electronic effects. The hydride ligand behaves as a metal dopant and contributes its two electrons to the number of superatomic electrons, while the halides act as electron-withdrawing ligands and do not change the number of superatomic electrons. Clarifying the binding modes of these ligands will aid in future efforts to use ligand derivatization as a powerful tool to rationally design Au NCs for use in functional materials.<br>


1998 ◽  
Vol 78 (4) ◽  
pp. 385-396 ◽  
Author(s):  
V. Kasperovich, V. V. Kresin
Keyword(s):  

2020 ◽  
Author(s):  
Olivier Charles Gagné

The scarcity of nitrogen in Earth’s crust, combined with challenging synthesis, have made inorganic nitrides a relatively-unexplored class of compounds compared to their naturally-abundant oxide counterparts. To facilitate exploration of their compositional space via <i>a priori</i> modeling, and to help <i>a posteriori</i> structure verification not limited to inferring the oxidation state of redox-active cations, we derive a suite of bond-valence parameters and Lewis-acid strength values for 76 cations observed bonding to N<sup>3-</sup>, and further outline a baseline statistical knowledge of bond lengths for these compounds. We examine structural and electronic effects responsible for the functional properties and anomalous bonding behavior of inorganic nitrides, and identify promising venues for exploring uncharted compositional spaces beyond the reach of high-throughput computational methods. We find that many mechanisms of bond-length variation ubiquitous to oxide and oxysalt compounds (e.g., lone-pair stereoactivity, the Jahn-Teller and pseudo Jahn-Teller effects) are similarly pervasive in inorganic nitrides, and are occasionally observed to result in greater distortion magnitude than their oxide counterparts. We identify inorganic nitrides with multiply-bonded metal ions as a promising venue in heterogeneous catalysis, e.g. in the development of a post-Haber-Bosch process proceeding at milder reaction conditions, thus representing further opportunity in the thriving exploration of the functional properties of this emerging class of materials.<br>


1998 ◽  
Vol 63 (5) ◽  
pp. 628-635 ◽  
Author(s):  
Jana Holubová ◽  
Zdeněk Černošek ◽  
Ivan Pavlík

The effect of the halide ligand on the bonding of niobium in niobocene dichloride and niobocene diiodide was investigated. The electronic absorption spectra of the two compounds in the range of d-d transitions were resolved into four bands corresponding to transitions of the d1 electron between five frontier orbitals in a molecule of symmetry point group C2v. The energies of the frontier molecular orbitals were determined relatively to the energy of the orbitals in the spherically symmetric ligand field formed by the appropriate halide ligands. The effect of the halide ligands on the spin-orbital interaction of the HOMO orbital is discussed qualitatively on the basis the ESR spectra.


Author(s):  
Lu Zhang ◽  
Benchao Zheng ◽  
Rui Guo ◽  
Ying Miao ◽  
Biao Li

The human sodium iodide symporter (hNIS) can be linked to the downstream of radiation-sensitive early growth response protein1 (Egr1) promoter, and activated by the Egr1 following 131I treatment. However, the...


Sign in / Sign up

Export Citation Format

Share Document