compositional space
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yu An ◽  
Carlo Andrea Riccardo Perini ◽  
Juanita Hidalgo ◽  
Andrés-Felipe Castro-Méndez ◽  
Vagott Jacob N. ◽  
...  

One of the organic component in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to long-term operation of organic-inorganic hybrid perovskite-based solar cells. Methylammonium-free perovskites thus represent a possible direction for more stable photo-absorbers that are also compatible with multijunction solar cells. However, most work on methylammonium-free perovskites involves cesium and formamidinium as the A-site cations, which are thermodynamically less stable than the methylammonium-based materials. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA+) is gradually replaced by cesium (Cs+), and iodide (I-) is substituted by bromide (Br-), i.e., CsyFA1–yPb(BrxI1–x)3. The crystal phases, which could be tuned by changing the tolerance factor for mixed perovskite alloys, are qualitatively determined and the composition–structure relationship is established in the CsyFA1–yPb(BrxI1–x)3 compositional space. We find that higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic. We also find that while some correlation exists between tolerance factor and structure, tolerance factor does not provide a holistic understanding of whether a perovskite structure will fully form. Given the wide range of bandgaps produced by this compositional space, an empirical expression is devised to predict the optical bandgap of CsyFA1–yPb(BrxI1–x)3 perovskites – which changes as a function of composition –, conducive to the design of absorbers with bandgaps tailor-made for specific tandem and single-junction applications. By screening 26 solar cells with different compositions, we find that Cs1/6FA5/6PbI3 delivers the highest efficiency and long-term stability among I-rich compositions. This work sheds light on the fundamental structure-property relationships in the CsyFA1–yPb(BrxI1–x)3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information of this compositional space.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 476-485
Author(s):  
Vasile-Adrian Surdu ◽  
Ecaterina Andronescu

Tailoring electrical and mechanical properties in the fluorite oxides family is of great interest for technological applications. Other than doping and substitution, entropy-driven stabilization is an emerging technique for new solid solutions formation and enhancing or exploring new functionalities. However, there is a high number of possible combinations for higher-order diagram investigations, and the current state of the art shows limited possibilities in predicting phase formation and related properties. In this paper, we expand the compositional space of fluorite oxides in ZrO2-HfO2-CeO2-Nb2O5-RE2O3 systems. X-ray diffractometry and scanning electron microscopy measurements showed the formation of cubic fluorite-type structures when processing compositions at 1600 °C.


2021 ◽  
Vol 33 (4) ◽  
pp. 1435-1443
Author(s):  
Sawankumar V. Patel ◽  
Swastika Banerjee ◽  
Haoyu Liu ◽  
Pengbo Wang ◽  
Po-Hsiu Chien ◽  
...  

2021 ◽  
Author(s):  
Olivier C. Gagné

Navigating high-return chemical spaces in inorganic nitrides via identification of coordination units bearing functional properties.


2020 ◽  
Author(s):  
Ana Isabel López Bonilla ◽  
José Manuel Barros García ◽  
Susana Martín Rey

The concept of enlarged painting refers to the technique of extending the support of an easel painting as well as its compositional space, to simulate a continuity with the original painting. Enlargements of support are considered historical additions with a huge documentary weight, so making decisions about their conservation entails great responsibility. Furthermore, additions can be key for a painting to fulfil its function within a certain social assemblage or network, so to promote correct decision making, it is vital to know the reasons why a painting was enlarged. The aim of this research has been to develop a classification of enlarged paintings, according to the purpose of the enlargement. The classification includes the following categories: updating pictures, adaptation to a new space and/or a new frame, completing mutilated paintings, changes in iconography, enlargement in order to create independent works, and grouping paintings together.


2020 ◽  
Author(s):  
Olivier Charles Gagné

The scarcity of nitrogen in Earth’s crust, combined with challenging synthesis, have made inorganic nitrides a relatively unexplored class of compounds compared to their naturally-abundant oxide counterparts. To facilitate exploration of their compositional space via <i>a priori</i> modeling, and to help <i>a posteriori</i> structure verification not limited to inferring the oxidation state of redox-active cations, we derive a suite of bond-valence parameters and Lewis-acid strength values for 76 cations observed bonding to N<sup>3-</sup>, and further outline a baseline statistical knowledge of bond lengths for these compounds. Examination of structural and electronic effects responsible for the functional properties and anomalous bonding behavior of inorganic nitrides shows that many mechanisms of bond-length variation ubiquitous to oxide and oxysalt compounds (e.g., lone-pair stereoactivity, the Jahn-Teller and pseudo Jahn-Teller effects) are similarly pervasive in inorganic nitrides, and are occasionally observed to result in greater distortion magnitude than their oxide counterparts. We identify promising functional units for exploring uncharted chemical spaces of inorganic nitrides, e.g. multiple-bond metal centers with promise regarding the development of a post-Haber-Bosch process proceeding at milder reaction conditions, and promote an atomistic understanding of chemical bonding in nitrides relevant to such pursuits as the development of a model of ion substitution in solids, a problem of great relevance to semiconductor doping whose resolve would fast-track the development of compound solar cells, battery materials, electronics, and more.<br>


2020 ◽  
Author(s):  
Olivier Charles Gagné

The scarcity of nitrogen in Earth’s crust, combined with challenging synthesis, have made inorganic nitrides a relatively unexplored class of compounds compared to their naturally-abundant oxide counterparts. To facilitate exploration of their compositional space via <i>a priori</i> modeling, and to help <i>a posteriori</i> structure verification not limited to inferring the oxidation state of redox-active cations, we derive a suite of bond-valence parameters and Lewis-acid strength values for 76 cations observed bonding to N<sup>3-</sup>, and further outline a baseline statistical knowledge of bond lengths for these compounds. Examination of structural and electronic effects responsible for the functional properties and anomalous bonding behavior of inorganic nitrides shows that many mechanisms of bond-length variation ubiquitous to oxide and oxysalt compounds (e.g., lone-pair stereoactivity, the Jahn-Teller and pseudo Jahn-Teller effects) are similarly pervasive in inorganic nitrides, and are occasionally observed to result in greater distortion magnitude than their oxide counterparts. We identify promising functional units for exploring uncharted chemical spaces of inorganic nitrides, e.g. multiple-bond metal centers with promise regarding the development of a post-Haber-Bosch process proceeding at milder reaction conditions, and promote an atomistic understanding of chemical bonding in nitrides relevant to such pursuits as the development of a model of ion substitution in solids, a problem of great relevance to semiconductor doping whose resolve would fast-track the development of compound solar cells, battery materials, electronics, and more.<br>


2020 ◽  
Vol 7 (23) ◽  
pp. 2001321
Author(s):  
Ziyue Ni ◽  
Yuanmin Zhu ◽  
Junjun Liu ◽  
Lin Yang ◽  
Peng Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document