Seeded growth of silver nanoplates with rough edges and their applications for SERS

CrystEngComm ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 173-177
Author(s):  
Qiang Zhang ◽  
Li Long ◽  
Gongguo Zhang ◽  
Zhi-Yuan Li ◽  
Yiqun Zheng

Silver nanoplates with rough edges have been successfully fabricated via seeded growth by manipulating surface diffusion and kinetics-controlled growth.

CrystEngComm ◽  
2021 ◽  
Vol 23 (13) ◽  
pp. 2582-2589
Author(s):  
Gongguo Zhang ◽  
Yanyun Ma ◽  
Xiaowei Fu ◽  
Wenjun Zhao ◽  
Feng Liu ◽  
...  

Gold@palladium–gold nanocrystals with a tunable branched shape are prepared via seeded growth, where the use of a syringe pump allows the manipulation over reaction kinetics as coupled by surface diffusion and strain caused by lattice mismatch.


Author(s):  
J.T. Fourie

Contamination in electron microscopes can be a serious problem in STEM or in situations where a number of high resolution micrographs are required of the same area in TEM. In modern instruments the environment around the specimen can be made free of the hydrocarbon molecules, which are responsible for contamination, by means of either ultra-high vacuum or cryo-pumping techniques. However, these techniques are not effective against hydrocarbon molecules adsorbed on the specimen surface before or during its introduction into the microscope. The present paper is concerned with a theory of how certain physical parameters can influence the surface diffusion of these adsorbed molecules into the electron beam where they are deposited in the form of long chain carbon compounds by interaction with the primary electrons.


Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


2020 ◽  
Vol 37 (1) ◽  
pp. 23-24
Author(s):  
Bear Williams ◽  
Cara Williams ◽  
Charles I. Carmona
Keyword(s):  

2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


2018 ◽  
Author(s):  
Felix Hemmann ◽  
Jonathan Hackebeil ◽  
Andreas Lißner ◽  
Florian Mertens

Molecular sieves with beta zeolite topology are promising catalysts for various reactions as they exhibits extraordinary Lewis acidity. However, their industrial application and related research in academica is hindered because their synthesis is time consuming and typically involves toxic chemicals as hydrofluoric acid. Therefore, tetraethylammonium fluorid was tested as a non-toxic fluotide source for the synthesis of beta zeolites. In combination with the previously reported nano-seeded growth method, a fast synthesis of beta zeolites only involving non-toxic chemicals was possible. Synthesized zeolites show comparable selectivity in the Bayer-Villinger oxidation as conventional zeolites synthesized with hydrofluoric acid.<br>


Sign in / Sign up

Export Citation Format

Share Document