A novel water-resistant and thermally stable black lead halide perovskite, phenyl viologen lead iodide C22H18N2(PbI3)2

2020 ◽  
Vol 49 (8) ◽  
pp. 2616-2627 ◽  
Author(s):  
Alessandro Latini ◽  
Simone Quaranta ◽  
Francesca Menchini ◽  
Nicola Lisi ◽  
Diego Di Girolamo ◽  
...  

A novel black, direct band gap (Eg = 1.32 eV), water and temperature stable hybrid lead halide perovskite was synthesized and characterized.

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1570
Author(s):  
Maroua Ben Haj Salah ◽  
Justine Tessier ◽  
Nicolas Mercier ◽  
Magali Allain ◽  
Antonin Leblanc ◽  
...  

Lead halide perovskites have emerged as promising materials for various optoelectronic applications. For photovoltaics, the reference compound is the 3D perovskite (MA)PbI3 (MA+ = methylammonium). However, this material suffers from instabilities towards humidity or light. This makes the search of new stable 3D lead halide materials very relevant. A strategy is the use of intermediate size cations instead of MA, which are not suitable to form the 3D ABX3 perovskites or 2D perovskites. Here, we report on a novel 3D metal halide hybrid material based on the intermediate size cation hydroxypropylammonium (HPA+), (HPA)6(MA)Pb5I17. We will see that extending the carbon chain length from two CH2 units (in the hydroxylethylammonium cation, HEA+) to three (HPA+) precludes the formation of a perovskite network as found in the lead and iodide deficient perovskite (HEA,MA)1+xPbxI3−x. In (HPA)6(MA)Pb5I17 the 3D lead halide network results from a 2D perovskite subnetworks linked by a PbI6 octahedra sharing its faces. DFT calculations confirm the direct band gap and reveal the peculiar band structure of this 3D network. On one hand the valence band has a 1D nature involving the p orbitals of the halide. On the other, the conduction band possesses a clear 2D character involving hybridization between the p orbitals of the metal and the halide.


2019 ◽  
Vol 10 (5) ◽  
pp. 943-952 ◽  
Author(s):  
Chenghao Bi ◽  
Shixun Wang ◽  
Qiang Li ◽  
Stephen V. Kershaw ◽  
Jianjun Tian ◽  
...  

2013 ◽  
Vol 652-654 ◽  
pp. 527-531 ◽  
Author(s):  
A.N. Alias ◽  
T.I. Tunku Kudin ◽  
Z.M. Zabidi ◽  
M.K. Harun ◽  
Ab Malik Marwan Ali ◽  
...  

The optical absorption spectra of blended poly (N-carbazole) (PVK) with polyvinylpyrrolidone (PVP) in various compositions are investigated. A doctor blade technique was used to coat the blended polymer on a quartz substrate. The electronic parameters such as absorption edge (Ee), allowed direct band gap (Ed), allowed indirect band gap (Ei), Urbach edge (Eu) and steepness parameter (γ) were calculated using Tauc/Davis-Mott Model. The results reveal that the Ee, Ed and Ei increase with increasing of PVP ratio. There also have variation changing in Urbach energy and steepness parameter.


2014 ◽  
Vol 44 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Adit Ghosh ◽  
Chandrika Varadachari
Keyword(s):  
Band Gap ◽  

2015 ◽  
Vol 54 (10) ◽  
pp. 3112-3115 ◽  
Author(s):  
Shengli Zhang ◽  
Zhong Yan ◽  
Yafei Li ◽  
Zhongfang Chen ◽  
Haibo Zeng
Keyword(s):  
Band Gap ◽  

RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 83876-83879 ◽  
Author(s):  
Chengyong Xu ◽  
Paul A. Brown ◽  
Kevin L. Shuford

We have investigated the effect of uniform plane strain on the electronic properties of monolayer 1T-TiS2using first-principles calculations. With the appropriate tensile strain, the material properties can be transformed from a semimetal to a direct band gap semiconductor.


Sign in / Sign up

Export Citation Format

Share Document