A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity

2020 ◽  
Vol 13 (4) ◽  
pp. 1231-1239 ◽  
Author(s):  
Mi Yoo ◽  
Young-Sang Yu ◽  
Hyunwoo Ha ◽  
Siwon Lee ◽  
Jin-Seok Choi ◽  
...  

Catalytic supremacy of Pt-single atoms achieved by CeOx–TiO2 interfaces.

2019 ◽  
Vol 21 (40) ◽  
pp. 22598-22610 ◽  
Author(s):  
Nan Zhang ◽  
Fuyi Chen ◽  
Longfei Guo

We demonstrate for the first time that the Pd1Ag single-atom alloys exhibit a high catalytic activity for formate oxidation reaction.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw2322 ◽  
Author(s):  
Peng Peng ◽  
Lei Shi ◽  
Feng Huo ◽  
Chunxia Mi ◽  
Xiaohong Wu ◽  
...  

Nitrogen-coordinated single-atom catalysts (SACs) have emerged as a frontier for electrocatalysis (such as oxygen reduction) with maximized atom utilization and highly catalytic activity. The precise design and operable synthesis of SACs are vital for practical applications but remain challenging because the commonly used high-temperature treatments always result in unpredictable structural changes and randomly created single atoms. Here, we develop a pyrolysis-free synthetic approach to prepare SACs with a high electrocatalytic activity using a fully π-conjugated iron phthalocyanine (FePc)–rich covalent organic framework (COF). Instead of randomly creating Fe-nitrogen moieties on a carbon matrix (Fe-N-C) through pyrolysis, we rivet the atomically well-designed Fe-N-C centers via intermolecular interactions between the COF network and the graphene matrix. The as-synthesized catalysts demonstrate exceptional kinetic current density in oxygen reduction catalysis (four times higher than the benchmark Pt/C) and superior power density and cycling stability in Zn-air batteries compared with Pt/C as air electrodes.


2016 ◽  
Vol 7 (2) ◽  
pp. 1011-1015 ◽  
Author(s):  
Peilei He ◽  
Biao Xu ◽  
Xiaobin Xu ◽  
Li Song ◽  
Xun Wang

Two kinds of assembly structures (nanorolls and hollow spindles) based on the palladium substituted Wells–Dawson polyoxometalate (Pd-POM) were synthesised and showed high catalytic activity for both the Suzuki–Miyaura coupling reaction and semihydrogenation reaction.


Nanoscale ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 4903-4908 ◽  
Author(s):  
Kang Liu ◽  
Junwei Fu ◽  
Li Zhu ◽  
Xiaodong Zhang ◽  
Hongmei Li ◽  
...  

Electrochemical nitrogen reduction reaction (NRR) is a promising route to produce ammonia under mild conditions. Single-atom W supported on BP was screened as a promising electrocatalyst with high catalytic activity, stability, and selectively for NRR.


2020 ◽  
Vol 22 (4) ◽  
pp. 1269-1274 ◽  
Author(s):  
Junkai Wang ◽  
Zhenxia Huang ◽  
Lilin Lu ◽  
Quanli Jia ◽  
Liang Huang ◽  
...  

A facile route for on-demand hydrogen production via simply controlling the mixing process of a KBH4 solution and an aqueous solution of ISOBAM-104 stabilized Co2+ ions.


2019 ◽  
Vol 21 (35) ◽  
pp. 19651-19659 ◽  
Author(s):  
Zhen Feng ◽  
Renyi Li ◽  
Yaqiang Ma ◽  
Yi Li ◽  
Dong Wei ◽  
...  

Graphdiyne (GDY) could provide a unique platform for synthesizing uniform single-atom catalysts (SACs) with high catalytic activity toward oxygen reduction (ORR) and oxygen evolution (OER) reactions.


2019 ◽  
Vol 1 (3) ◽  
pp. 1165-1174 ◽  
Author(s):  
Sasfan Arman Wella ◽  
Yuji Hamamoto ◽  
Suprijadi Suprijadi ◽  
Yoshitada Morikawa ◽  
Ikutaro Hamada

Single-atom catalysis, which utilizes single atoms as active sites, is one of promising ways to enhance the catalytic activity and to reduce the amount of precious metals used. Here by means of density functional theory based thermodynamics we show that the single platinum atoms preferentially adsorb on the substitutional carbon sites at the hydrogen terminated graphene edge.


Author(s):  
Libo Deng ◽  
Xiujuan Li ◽  
Yuanyuan Chen ◽  
Weijie Liao ◽  
Lei Qiu ◽  
...  

Single atom catalysts (SACs) stabilized by nitrogen in a carbon support and having maximized atom utilization efficiency and an unsaturated environment exhibit high catalytic activity and selectivity. Incorporating nitrogen into...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haile Liu ◽  
Yonghui Li ◽  
Si Sun ◽  
Qi Xin ◽  
Shuhu Liu ◽  
...  

AbstractEmerging artificial enzymes with reprogrammed and augmented catalytic activity and substrate selectivity have long been pursued with sustained efforts. The majority of current candidates have rather poor catalytic activity compared with natural molecules. To tackle this limitation, we design artificial enzymes based on a structurally well-defined Au25 cluster, namely clusterzymes, which are endowed with intrinsic high catalytic activity and selectivity driven by single-atom substitutions with modulated bond lengths. Au24Cu1 and Au24Cd1 clusterzymes exhibit 137 and 160 times higher antioxidant capacities than natural trolox, respectively. Meanwhile, the clusterzymes demonstrate preferential enzyme-mimicking catalytic activities, with Au25, Au24Cu1 and Au24Cd1 displaying compelling selectivity in glutathione peroxidase-like (GPx-like), catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities, respectively. Au24Cu1 decreases peroxide in injured brain via catalytic reactions, while Au24Cd1 preferentially uses superoxide and nitrogenous signal molecules as substrates, and significantly decreases inflammation factors, indicative of an important role in mitigating neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document