4D printing reconfigurable, deployable and mechanically tunable metamaterials

2019 ◽  
Vol 6 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Chen Yang ◽  
Manish Boorugu ◽  
Andrew Dopp ◽  
Jie Ren ◽  
Raymond Martin ◽  
...  

Digital 3D printing with a shape memory polymer is utilized to create mechanical metamaterials exhibiting dramatic and reversible changes in stiffness, geometry, and functions.

2020 ◽  
Vol 7 (10) ◽  
pp. 105305 ◽  
Author(s):  
Wubin Shan ◽  
Yifan Chen ◽  
Mo Hu ◽  
Shigang Qin ◽  
Peng Liu

Author(s):  
N. Dresler ◽  
A. Ulanov ◽  
M. Aviv ◽  
D. Ashkenazi ◽  
A. Stern

The 4D additive manufacturing processes are considered today as the "next big thing" in R&D. The aim of this research is to provide two examples of commercial PLA based shape memory polymer (SMP) objects printed on an open-source 3D printer in order to proof the feasibility of such novel 4D printing process. To that purpose, a PLA based filament of eSUN (4D filament e4D-1white, SMP) was chosen, and two applications, a spring and a vase, were designed by 3D-printing with additive manufacturing (AM) fused filament fabrication (FFF) technique. The 4D-printed objects were successfully produced, the shape memory effect and their functionality were demonstrated by achieving the shape-memory cycle of programming, storage and recovery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Zhang ◽  
Hao Wang ◽  
Hongtao Wang ◽  
John You En Chan ◽  
Hailong Liu ◽  
...  

AbstractFour-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.


2019 ◽  
Vol 1 (4) ◽  
pp. 410-417 ◽  
Author(s):  
Bangan Peng ◽  
Yunchong Yang ◽  
Kai Gu ◽  
Eric J. Amis ◽  
Kevin A. Cavicchi

Author(s):  
Yixiong Feng ◽  
Siyuan Zeng ◽  
Yicong Gao ◽  
Hao Zheng ◽  
Hao Qiu ◽  
...  

Abstract In the traditional 4D printing method using Shape Memory Polymer (SMP), the design process and preparation of 4d printing are complex. In this research, we proposed a design method of a temperature-driven SMP smart structure and made Realization. This smart structure also a bilayer structure use an SMP material in one printing process to realize the deformation in 4D printing. The design of the smart structure is mainly realized by parameter allocation in the printing process, such as print line width, print line height, print temperature, simulation temperature, and fill the form in Fused Deposition Modelling (FDM). Through experimental determination and analysis of statics and thermodynamics, our method fitting out the model relationship between process parameters and the curvature and strain of smart structure. This bilayer smart structure widely applied to the self-folding. In the example stage, this paper mainly uses PLA as an SMP material for the preparation of structure. Observing that the motion behaviors of the smart structure conformed to the model measured in this paper, the average accuracy of the strategy reaches 95%.


2019 ◽  
Vol 11 (35) ◽  
pp. 32408-32413 ◽  
Author(s):  
Yue Zhang ◽  
Limei Huang ◽  
Huijie Song ◽  
Chujun Ni ◽  
Jingjun Wu ◽  
...  

2018 ◽  
Vol 5 (6) ◽  
pp. 065704 ◽  
Author(s):  
Carlos A Garcia Rosales ◽  
Mario F Garcia Duarte ◽  
Hoejin Kim ◽  
Luis Chavez ◽  
Deidra Hodges ◽  
...  

Author(s):  
Zhicheng Rong ◽  
Chang Liu ◽  
Yingbin Hu

Abstract In recent years, more and more attentions have been attracted on integrating three-dimensional (3D) printing with fields (such as magnetic field) or innovating new methods to reap the full potential of 3D printing in manufacturing high-quality parts and processing nano-scaled composites. Among all of newly innovated methods, four-dimensional (4D) printing has been proved to be an effective way of creating dynamic components from simple structures. Common feeding materials in 4D printing include shape memory hydrogels, shape memory polymers, and shape memory alloys. However, few attempts have been made on 4D printing of ceramic materials to shape ceramics into intricate structures, owing to ceramics’ inherent brittleness nature. Facing this problem, this investigation aims at filling the gap between 4D printing and fabrication of complex ceramic structures. Inspired by swelling-and-shrinking-induced self-folding, a 4D printing method is innovated to add an additional shape change of ceramic structures by controlling ZrO2 contents and patterns. Experimental results evidenced that by deliberately controlling ZrO2 contents and patterns, 3D-printed ceramic parts would undergo bending and twisting during the sintering process. To demonstrate the capabilities of this method, more complex structures (such as a flower-like structure) were fabricated. In addition, functional parts with magnetic behaviors were 4D-printed by incorporating iron into the PDMS-ZrO2 ink.


Sign in / Sign up

Export Citation Format

Share Document