Design and Realization of Temperature-Driven Smart Structure Based on Shape Memory Polymer in 4D Printing

Author(s):  
Yixiong Feng ◽  
Siyuan Zeng ◽  
Yicong Gao ◽  
Hao Zheng ◽  
Hao Qiu ◽  
...  

Abstract In the traditional 4D printing method using Shape Memory Polymer (SMP), the design process and preparation of 4d printing are complex. In this research, we proposed a design method of a temperature-driven SMP smart structure and made Realization. This smart structure also a bilayer structure use an SMP material in one printing process to realize the deformation in 4D printing. The design of the smart structure is mainly realized by parameter allocation in the printing process, such as print line width, print line height, print temperature, simulation temperature, and fill the form in Fused Deposition Modelling (FDM). Through experimental determination and analysis of statics and thermodynamics, our method fitting out the model relationship between process parameters and the curvature and strain of smart structure. This bilayer smart structure widely applied to the self-folding. In the example stage, this paper mainly uses PLA as an SMP material for the preparation of structure. Observing that the motion behaviors of the smart structure conformed to the model measured in this paper, the average accuracy of the strategy reaches 95%.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Zhang ◽  
Hao Wang ◽  
Hongtao Wang ◽  
John You En Chan ◽  
Hailong Liu ◽  
...  

AbstractFour-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.


2019 ◽  
Vol 11 (35) ◽  
pp. 32408-32413 ◽  
Author(s):  
Yue Zhang ◽  
Limei Huang ◽  
Huijie Song ◽  
Chujun Ni ◽  
Jingjun Wu ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 53
Author(s):  
Romario A Wicaksono ◽  
Eddy Kurniawan ◽  
M Khalid Syafrianto ◽  
Ramadhani Fadelandro Suratman ◽  
M Ridho Sofyandi

<p><em>The process of designing and manufacturing a Cartesian 3D printer model based on Fused Deposition Modelling (FDM) is carried out to produce a 3D printer machine that can perform the printing process accurately and quickly. In this research, the process is divided into three stages, namely designing using Computer-Aided Design (CAD) software, printing and assembling components of a 3D printer machine, and analysing the mechanical structure of a 3D printer machine. This 3D printer is designed to carry out the printing process with an area of 180x180x150 mm. Some components of 3D printing machines use Polylactic Acid (PLA). The simulation results based on the Finite Element Method show that the 3D printer engine is feasible to produce printing with a mass of 40% of the maximum possible load.</em></p>


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3101
Author(s):  
Abishek Kafle ◽  
Eric Luis ◽  
Raman Silwal ◽  
Houwen Matthew Pan ◽  
Pratisthit Lal Shrestha ◽  
...  

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.


2020 ◽  
Vol 72 (6) ◽  
pp. 811-818 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

Purpose The purpose of this paper is to examine the impact of three-dimensional (3D)-printing process settings (particularly print orientation) on the tribological properties of different polymers. Design/methodology/approach In this study, fused deposition modelling 3D-printing technology was used for fabricating the specimens. To evaluate the influence of print orientation, the test pieces were manufactured horizontally (X) and vertically (Z). The tribological properties of various printed polymers, which are polylactide acid, high tensile/high temperature-polylactide acid and polyethylene terephthalate-glycol have been studied. The tribological tests have been carried out under reciprocating sliding and dry condition. Findings The results show that the presence of various orientations during the 3D-printing process makes a difference in the coefficient of friction and the wear depth values. Findings suggest that printing structure in the horizontal orientation (X) assists in reducing friction and wear. Originality/value To date, there has been very limited research on the tribology of objects produced by 3D printing. This work was made as an attempt to pave the way for future research on the science of tribology of 3D-printed polymers.


2019 ◽  
Vol 6 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Chen Yang ◽  
Manish Boorugu ◽  
Andrew Dopp ◽  
Jie Ren ◽  
Raymond Martin ◽  
...  

Digital 3D printing with a shape memory polymer is utilized to create mechanical metamaterials exhibiting dramatic and reversible changes in stiffness, geometry, and functions.


Sign in / Sign up

Export Citation Format

Share Document