The construction of ZnS–In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance

2019 ◽  
Vol 43 (36) ◽  
pp. 14402-14408 ◽  
Author(s):  
Long-Zhen Zhang ◽  
Ya-Nan Li ◽  
Minqiang Wang ◽  
Heng Liu ◽  
Hao Chen ◽  
...  

Nanoscale ZnS–In2S3 heterostructure with abundant crystal interfaces delivered excellent visible-light-harvest ability and high photo(electro)catalytic performance.

2019 ◽  
Vol 10 ◽  
pp. 1412-1422 ◽  
Author(s):  
Minlin Ao ◽  
Kun Liu ◽  
Xuekun Tang ◽  
Zishun Li ◽  
Qian Peng ◽  
...  

A BiOCl/TiO2/diatomite (BTD) composite was synthesized via a modified sol–gel method and precipitation/calcination method for application as a photocatalyst and shows promise for degradation of organic pollutants in wastewater upon visible-light irradiation. In the composite, diatomite was used as a carrier to support a layer of titanium dioxide (TiO2) nanoparticles and bismuth oxychloride (BiOCl) nanosheets. The results show that TiO2 nanoparticles and BiOCl nanosheets uniformly cover the surface of diatomite and bring TiO2 and BiOCl into close proximity. Rhodamine B was used as the target degradation product and visible light (λ > 400 nm) was used as the light source for the evaluation of the photocatalytic properties of the prepared BTD composite. The results show that the catalytic performance of the BTD composite under visible-light irradiation is much higher than that of TiO2 or BiOCl alone. When the molar ratio of BiOCl to TiO2 is 1:1 and the calcination temperature is 400 °C, the composite was found to exhibit the best catalytic effect. Through the study of the photocatalytic mechanism, it is shown that the strong visible-light photocatalytic activity of the BTD composite results mainly from the quick migration of photoelectrons from the conduction band of TiO2/diatomite to the surface of BiOCl, which promotes the separation effect and reduces the recombination rate of the photoelectron–hole pair. Due to the excellent catalytic performance, the BTD composite shows great potential for wide application in the field of sewage treatment driven by solar energy.


2018 ◽  
Vol 8 (20) ◽  
pp. 5148-5154 ◽  
Author(s):  
Weiwei Yu ◽  
Di Zhang ◽  
Xinwen Guo ◽  
Chunshan Song ◽  
Zhongkui Zhao

Non-oxygen coupling of amines to imines, initiated by hydrogen evolution over Ni/CdS nanoparticles with visible light, smoothly happens. Outstanding catalytic performance was achieved, originating from integrating effect of coupling reaction and solar-driven reduction of aqueous protons.


2020 ◽  
Vol 01 ◽  
Author(s):  
Bonamali Pal ◽  
Anila Monga ◽  
Aadil Bathla

Background:: Bimetallic nanocomposites have currently gained significant importance for enhanced catalytic applications relative to monometallic analogues. The synergistic interactions modified electronic and optical properties in the bimetallic (M1@M2) structural morphology e.g., core-shell /alloy nanostructures resulted in a better co-catalytic performance for TiO2 photocatalysis. Objective:: Hence, this article discusses the preparation, characterization, and co-catalytic activity of different bimetallic nanostructures namely, Cu@Zn, Pd@Au, Au@Ag, and Ag@Cu, etc. Method:: These bimetallic co-catalysts deposited on TiO2 possess the ability to absorb visible light due to surface plasmonic absorption and are also expected to display the new properties due to synergy between two distinct metals. As a result, they reveal the highest level of activity than the monometal deposited TiO2. Result:: Their optical absorption, emission, charge carrier dynamics, and surface structural morphology are explained for the improved photocatalytic activity of M1@M2 loaded TiO2 for the hydrogenation of certain organic compounds e.g., quinoline, crotonaldehyde, and 1,3-dinitrobenzene, etc. under UV/ visible light irradiation. Conclusion:: It revealed that the use of bimetallic core@shell co-catalyst for hydrogenation of important industrial organics by M1@M2-TiO2 nanocomposite demonstrates beneficial reactivity in many instances relative to conventional transition metal catalysts.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


Sign in / Sign up

Export Citation Format

Share Document