Subtle substitution controls the rainbow chromatic behaviour of multi-stimuli responsive core-expanded pyrenes

2020 ◽  
Vol 4 (1) ◽  
pp. 268-276 ◽  
Author(s):  
David T. Hogan ◽  
Benjamin S. Gelfand ◽  
Denis M. Spasyuk ◽  
Todd C. Sutherland

Core-expanded pyrenes exhibit rainbow solvatochromism, reversible acidochromism in both solution and solid-state, and reversible crystal-to-crystal mechanochromism all governed by substitution pattern.

Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 244
Author(s):  
Mohammad Aghazadeh Meshgi ◽  
Alexander Pöcheim ◽  
Judith Baumgartner ◽  
Viatcheslav V. Jouikov ◽  
Christoph Marschner

A number of mono- and dioligosilanylated silocanes were prepared. Compounds included silocanes with 1-methyl-1-tris(trimethylsilyl)silyl, 1,1-bis[tris(trimethylsilyl)silyl], and 1,1-bis[tris(trimethylsilyl)germyl] substitution pattern as well as two examples where the silocane silicon atom is part of a cyclosilane or oxacyclosilane ring. The mono-tris(trimethylsilyl)silylated compound could be converted to the respective silocanylbis(trimethylsilyl)silanides by reaction with KOtBu and in similar reactions the cyclosilanes were transformed to oligosilane-1,3-diides. However, the reaction of the 1,1-bis[tris(trimethylsilyl)silylated] silocane with two equivalents of KOtBu leads to the replacement of one tris(trimethylsilyl)silyl unit with a tert-butoxy substituent followed by silanide formation via KOtBu attack at one of the SiMe3 units of remaining tris(trimethylsilyl)silyl group. For none of the silylated silocanes, signs of hypercoordinative interaction between the nitrogen and silicon silocane atoms were detected either in the solid state. by single crystal XRD analysis, nor in solution by 29Si-NMR spectroscopy. This was further confirmed by cyclic voltammetry and a DFT study, which demonstrated that the N-Si distance in silocanes is not only dependent on the energy of a potential N-Si interaction, but also on steric factors and through-space interactions of the neighboring groups at Si and N, imposing the orientation of the pz(N) orbital relative to the N-Si-X axis.


2017 ◽  
Vol 70 (11) ◽  
pp. 1227 ◽  
Author(s):  
Carol Hua ◽  
Stone Woo ◽  
Aditya Rawal ◽  
Floriana Tuna ◽  
James M. Hook ◽  
...  

A series of electroactive triarylamine porous organic polymers (POPs) with furan, thiophene, and selenophene (POP-O, POP-S, and POP-Se) linkers have been synthesised and their electronic and spectroscopic properties investigated as a function of redox state. Solid state NMR provided insight into the structural features of the POPs, while in situ solid state Vis-NIR and electron paramagnetic resonance spectroelectrochemistry showed that the distinct redox states in POP-S could be reversibly accessed. The development of redox-active porous organic polymers with heterocyclic linkers affords their potential application as stimuli responsive materials in gas storage, catalysis, and as electrochromic materials.


2021 ◽  
Author(s):  
Dominik Göbel ◽  
Pascal Rusch ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Nadja C. Bigall ◽  
...  

The synthesis and optical characterization of novel single-benzene ESIPT-based fluorophores is described in solid state and in solution. Special attention is given towards the influence of their unique substitution pattern on their optical properties. Depending on this pattern, aggregation induced emission or aggregation caused quenching (ACQ) is observed in the solid state.<br>


CrystEngComm ◽  
2021 ◽  
Author(s):  
Palaniyappan Nagarasu ◽  
Anu Kundu ◽  
Vijay Thiruvenkatam ◽  
Raghavaiah Pallepogu ◽  
Philip Philip Anthony ◽  
...  

A series of stimuli-responsive AIEgens of tetraphenylethyelene (TPE) fused Imidazole derivatives (1-7) were synthesized and explored their substituents controlled fluorescent properties in the solid state. The structure of the synthesized...


Author(s):  
Yang Tong ◽  
xingwei Chen ◽  
Li-Hua He ◽  
Jing-Lin Chen ◽  
Sui-Jun Liu ◽  
...  

Color regulation of solid-state luminescence is desirable and challenging. Herein we report two new three- and four-coordinate bimetallic cuprous complexes 1 and 2, which bear a NH-deprotonated 3-(2′-pyridyl)pyrazole adopting monoanionic...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Gao ◽  
Jian Li ◽  
Sheng Yin ◽  
Junliang Sun ◽  
Cheng Wang

Abstract The tuning of molecular switches in solid state toward stimuli-responsive materials has attracted more and more attention in recent years. Herein, we report a switchable three-dimensional covalent organic framework (3D COF), which can undergo a reversible transformation through a hydroquinone/quinone redox reaction while retaining the crystallinity and porosity. Our results clearly show that the switching process gradually happened through the COF framework, with an almost quantitative conversion yield. In addition, the redox-triggered transformation will form different functional groups on the pore surface and modify the shape of pore channel, which can result in tunable gas separation property. This study strongly demonstrates 3D COFs can provide robust platforms for efficient tuning of molecular switches in solid state. More importantly, switching of these moieties in 3D COFs can remarkably modify the internal pore environment, which will thus enable the resulting materials with interesting stimuli-responsive properties.


2020 ◽  
Vol 44 (21) ◽  
pp. 8680-8696 ◽  
Author(s):  
Parthsarathy Gayathri ◽  
Mehboobali Pannipara ◽  
Abdullah G. Al-Sehemi ◽  
Savarimuthu Philip Anthony

Molecular engineering of triphenylamine (TPA) units produced multi-stimuli-responsive solid state fluorescent materials.


2019 ◽  
Vol 4 (13) ◽  
pp. 3884-3890 ◽  
Author(s):  
Parthasarathy Gayathri ◽  
Subramanian Karthikeyan ◽  
Dohyun Moon ◽  
Savarimuthu Philip Anthony

Sign in / Sign up

Export Citation Format

Share Document